Classical commited on
Commit
b4a1d77
·
verified ·
1 Parent(s): 5c51cd3

Upload 12 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
2_Dense/config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "in_features": 1024,
3
+ "out_features": 1792,
4
+ "bias": true,
5
+ "activation_function": "torch.nn.modules.linear.Identity"
6
+ }
2_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa650549f91c0471ad79872a1f8ba2930f54147f0da5fb5a8851f9d19d8200bd
3
+ size 3675150
README.md CHANGED
@@ -1,3 +1,1081 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: checkpoint-1431
6
+ results:
7
+ - task:
8
+ type: STS
9
+ dataset:
10
+ type: C-MTEB/AFQMC
11
+ name: MTEB AFQMC
12
+ config: default
13
+ split: validation
14
+ revision: None
15
+ metrics:
16
+ - type: cos_sim_pearson
17
+ value: 56.306314279047875
18
+ - type: cos_sim_spearman
19
+ value: 61.020227685004016
20
+ - type: euclidean_pearson
21
+ value: 58.61821670933433
22
+ - type: euclidean_spearman
23
+ value: 60.131457106640674
24
+ - type: manhattan_pearson
25
+ value: 58.6189460369694
26
+ - type: manhattan_spearman
27
+ value: 60.126350618526224
28
+ - task:
29
+ type: STS
30
+ dataset:
31
+ type: C-MTEB/ATEC
32
+ name: MTEB ATEC
33
+ config: default
34
+ split: test
35
+ revision: None
36
+ metrics:
37
+ - type: cos_sim_pearson
38
+ value: 55.8612958476143
39
+ - type: cos_sim_spearman
40
+ value: 59.01977664864512
41
+ - type: euclidean_pearson
42
+ value: 62.028094897243655
43
+ - type: euclidean_spearman
44
+ value: 58.6046814257705
45
+ - type: manhattan_pearson
46
+ value: 62.02580042431887
47
+ - type: manhattan_spearman
48
+ value: 58.60626890004892
49
+ - task:
50
+ type: Classification
51
+ dataset:
52
+ type: mteb/amazon_reviews_multi
53
+ name: MTEB AmazonReviewsClassification (zh)
54
+ config: zh
55
+ split: test
56
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
57
+ metrics:
58
+ - type: accuracy
59
+ value: 49.496
60
+ - type: f1
61
+ value: 46.673963383873065
62
+ - task:
63
+ type: STS
64
+ dataset:
65
+ type: C-MTEB/BQ
66
+ name: MTEB BQ
67
+ config: default
68
+ split: test
69
+ revision: None
70
+ metrics:
71
+ - type: cos_sim_pearson
72
+ value: 70.73971622592535
73
+ - type: cos_sim_spearman
74
+ value: 72.76102992060764
75
+ - type: euclidean_pearson
76
+ value: 71.04525865868672
77
+ - type: euclidean_spearman
78
+ value: 72.4032852155075
79
+ - type: manhattan_pearson
80
+ value: 71.03693009336658
81
+ - type: manhattan_spearman
82
+ value: 72.39635701224252
83
+ - task:
84
+ type: Clustering
85
+ dataset:
86
+ type: C-MTEB/CLSClusteringP2P
87
+ name: MTEB CLSClusteringP2P
88
+ config: default
89
+ split: test
90
+ revision: None
91
+ metrics:
92
+ - type: v_measure
93
+ value: 56.34751074520767
94
+ - task:
95
+ type: Clustering
96
+ dataset:
97
+ type: C-MTEB/CLSClusteringS2S
98
+ name: MTEB CLSClusteringS2S
99
+ config: default
100
+ split: test
101
+ revision: None
102
+ metrics:
103
+ - type: v_measure
104
+ value: 48.4856662121073
105
+ - task:
106
+ type: Reranking
107
+ dataset:
108
+ type: C-MTEB/CMedQAv1-reranking
109
+ name: MTEB CMedQAv1
110
+ config: default
111
+ split: test
112
+ revision: None
113
+ metrics:
114
+ - type: map
115
+ value: 89.26384109024997
116
+ - type: mrr
117
+ value: 91.27261904761905
118
+ - task:
119
+ type: Reranking
120
+ dataset:
121
+ type: C-MTEB/CMedQAv2-reranking
122
+ name: MTEB CMedQAv2
123
+ config: default
124
+ split: test
125
+ revision: None
126
+ metrics:
127
+ - type: map
128
+ value: 90.0464058154547
129
+ - type: mrr
130
+ value: 92.06480158730159
131
+ - task:
132
+ type: Retrieval
133
+ dataset:
134
+ type: C-MTEB/CmedqaRetrieval
135
+ name: MTEB CmedqaRetrieval
136
+ config: default
137
+ split: dev
138
+ revision: None
139
+ metrics:
140
+ - type: map_at_1
141
+ value: 27.236
142
+ - type: map_at_10
143
+ value: 40.778
144
+ - type: map_at_100
145
+ value: 42.692
146
+ - type: map_at_1000
147
+ value: 42.787
148
+ - type: map_at_3
149
+ value: 36.362
150
+ - type: map_at_5
151
+ value: 38.839
152
+ - type: mrr_at_1
153
+ value: 41.335
154
+ - type: mrr_at_10
155
+ value: 49.867
156
+ - type: mrr_at_100
157
+ value: 50.812999999999995
158
+ - type: mrr_at_1000
159
+ value: 50.848000000000006
160
+ - type: mrr_at_3
161
+ value: 47.354
162
+ - type: mrr_at_5
163
+ value: 48.718
164
+ - type: ndcg_at_1
165
+ value: 41.335
166
+ - type: ndcg_at_10
167
+ value: 47.642
168
+ - type: ndcg_at_100
169
+ value: 54.855
170
+ - type: ndcg_at_1000
171
+ value: 56.449000000000005
172
+ - type: ndcg_at_3
173
+ value: 42.203
174
+ - type: ndcg_at_5
175
+ value: 44.416
176
+ - type: precision_at_1
177
+ value: 41.335
178
+ - type: precision_at_10
179
+ value: 10.568
180
+ - type: precision_at_100
181
+ value: 1.6400000000000001
182
+ - type: precision_at_1000
183
+ value: 0.184
184
+ - type: precision_at_3
185
+ value: 23.998
186
+ - type: precision_at_5
187
+ value: 17.389
188
+ - type: recall_at_1
189
+ value: 27.236
190
+ - type: recall_at_10
191
+ value: 58.80800000000001
192
+ - type: recall_at_100
193
+ value: 88.411
194
+ - type: recall_at_1000
195
+ value: 99.032
196
+ - type: recall_at_3
197
+ value: 42.253
198
+ - type: recall_at_5
199
+ value: 49.118
200
+ - task:
201
+ type: PairClassification
202
+ dataset:
203
+ type: C-MTEB/CMNLI
204
+ name: MTEB Cmnli
205
+ config: default
206
+ split: validation
207
+ revision: None
208
+ metrics:
209
+ - type: cos_sim_accuracy
210
+ value: 86.03728202044498
211
+ - type: cos_sim_ap
212
+ value: 92.49469583272597
213
+ - type: cos_sim_f1
214
+ value: 86.74095974528088
215
+ - type: cos_sim_precision
216
+ value: 84.43657294664601
217
+ - type: cos_sim_recall
218
+ value: 89.17465513210195
219
+ - type: dot_accuracy
220
+ value: 72.21888153938664
221
+ - type: dot_ap
222
+ value: 80.59377163340332
223
+ - type: dot_f1
224
+ value: 74.96686040583258
225
+ - type: dot_precision
226
+ value: 66.4737793851718
227
+ - type: dot_recall
228
+ value: 85.94809445873275
229
+ - type: euclidean_accuracy
230
+ value: 85.47203848466627
231
+ - type: euclidean_ap
232
+ value: 91.89152584749868
233
+ - type: euclidean_f1
234
+ value: 86.38105975197294
235
+ - type: euclidean_precision
236
+ value: 83.40953625081646
237
+ - type: euclidean_recall
238
+ value: 89.5721299976619
239
+ - type: manhattan_accuracy
240
+ value: 85.3758268190018
241
+ - type: manhattan_ap
242
+ value: 91.88989707722311
243
+ - type: manhattan_f1
244
+ value: 86.39767519839052
245
+ - type: manhattan_precision
246
+ value: 82.76231263383298
247
+ - type: manhattan_recall
248
+ value: 90.36707972878185
249
+ - type: max_accuracy
250
+ value: 86.03728202044498
251
+ - type: max_ap
252
+ value: 92.49469583272597
253
+ - type: max_f1
254
+ value: 86.74095974528088
255
+ - task:
256
+ type: Retrieval
257
+ dataset:
258
+ type: C-MTEB/CovidRetrieval
259
+ name: MTEB CovidRetrieval
260
+ config: default
261
+ split: dev
262
+ revision: None
263
+ metrics:
264
+ - type: map_at_1
265
+ value: 74.34100000000001
266
+ - type: map_at_10
267
+ value: 82.49499999999999
268
+ - type: map_at_100
269
+ value: 82.64200000000001
270
+ - type: map_at_1000
271
+ value: 82.643
272
+ - type: map_at_3
273
+ value: 81.142
274
+ - type: map_at_5
275
+ value: 81.95400000000001
276
+ - type: mrr_at_1
277
+ value: 74.71
278
+ - type: mrr_at_10
279
+ value: 82.553
280
+ - type: mrr_at_100
281
+ value: 82.699
282
+ - type: mrr_at_1000
283
+ value: 82.70100000000001
284
+ - type: mrr_at_3
285
+ value: 81.279
286
+ - type: mrr_at_5
287
+ value: 82.069
288
+ - type: ndcg_at_1
289
+ value: 74.605
290
+ - type: ndcg_at_10
291
+ value: 85.946
292
+ - type: ndcg_at_100
293
+ value: 86.607
294
+ - type: ndcg_at_1000
295
+ value: 86.669
296
+ - type: ndcg_at_3
297
+ value: 83.263
298
+ - type: ndcg_at_5
299
+ value: 84.71600000000001
300
+ - type: precision_at_1
301
+ value: 74.605
302
+ - type: precision_at_10
303
+ value: 9.758
304
+ - type: precision_at_100
305
+ value: 1.005
306
+ - type: precision_at_1000
307
+ value: 0.101
308
+ - type: precision_at_3
309
+ value: 29.996000000000002
310
+ - type: precision_at_5
311
+ value: 18.736
312
+ - type: recall_at_1
313
+ value: 74.34100000000001
314
+ - type: recall_at_10
315
+ value: 96.523
316
+ - type: recall_at_100
317
+ value: 99.473
318
+ - type: recall_at_1000
319
+ value: 100.0
320
+ - type: recall_at_3
321
+ value: 89.278
322
+ - type: recall_at_5
323
+ value: 92.83500000000001
324
+ - task:
325
+ type: Retrieval
326
+ dataset:
327
+ type: C-MTEB/DuRetrieval
328
+ name: MTEB DuRetrieval
329
+ config: default
330
+ split: dev
331
+ revision: None
332
+ metrics:
333
+ - type: map_at_1
334
+ value: 26.950000000000003
335
+ - type: map_at_10
336
+ value: 82.408
337
+ - type: map_at_100
338
+ value: 85.057
339
+ - type: map_at_1000
340
+ value: 85.09100000000001
341
+ - type: map_at_3
342
+ value: 57.635999999999996
343
+ - type: map_at_5
344
+ value: 72.48
345
+ - type: mrr_at_1
346
+ value: 92.15
347
+ - type: mrr_at_10
348
+ value: 94.554
349
+ - type: mrr_at_100
350
+ value: 94.608
351
+ - type: mrr_at_1000
352
+ value: 94.61
353
+ - type: mrr_at_3
354
+ value: 94.292
355
+ - type: mrr_at_5
356
+ value: 94.459
357
+ - type: ndcg_at_1
358
+ value: 92.15
359
+ - type: ndcg_at_10
360
+ value: 89.108
361
+ - type: ndcg_at_100
362
+ value: 91.525
363
+ - type: ndcg_at_1000
364
+ value: 91.82900000000001
365
+ - type: ndcg_at_3
366
+ value: 88.44
367
+ - type: ndcg_at_5
368
+ value: 87.271
369
+ - type: precision_at_1
370
+ value: 92.15
371
+ - type: precision_at_10
372
+ value: 42.29
373
+ - type: precision_at_100
374
+ value: 4.812
375
+ - type: precision_at_1000
376
+ value: 0.48900000000000005
377
+ - type: precision_at_3
378
+ value: 79.14999999999999
379
+ - type: precision_at_5
380
+ value: 66.64
381
+ - type: recall_at_1
382
+ value: 26.950000000000003
383
+ - type: recall_at_10
384
+ value: 89.832
385
+ - type: recall_at_100
386
+ value: 97.921
387
+ - type: recall_at_1000
388
+ value: 99.471
389
+ - type: recall_at_3
390
+ value: 59.562000000000005
391
+ - type: recall_at_5
392
+ value: 76.533
393
+ - task:
394
+ type: Retrieval
395
+ dataset:
396
+ type: C-MTEB/EcomRetrieval
397
+ name: MTEB EcomRetrieval
398
+ config: default
399
+ split: dev
400
+ revision: None
401
+ metrics:
402
+ - type: map_at_1
403
+ value: 53.5
404
+ - type: map_at_10
405
+ value: 63.105999999999995
406
+ - type: map_at_100
407
+ value: 63.63100000000001
408
+ - type: map_at_1000
409
+ value: 63.641999999999996
410
+ - type: map_at_3
411
+ value: 60.617
412
+ - type: map_at_5
413
+ value: 62.132
414
+ - type: mrr_at_1
415
+ value: 53.5
416
+ - type: mrr_at_10
417
+ value: 63.105999999999995
418
+ - type: mrr_at_100
419
+ value: 63.63100000000001
420
+ - type: mrr_at_1000
421
+ value: 63.641999999999996
422
+ - type: mrr_at_3
423
+ value: 60.617
424
+ - type: mrr_at_5
425
+ value: 62.132
426
+ - type: ndcg_at_1
427
+ value: 53.5
428
+ - type: ndcg_at_10
429
+ value: 67.92200000000001
430
+ - type: ndcg_at_100
431
+ value: 70.486
432
+ - type: ndcg_at_1000
433
+ value: 70.777
434
+ - type: ndcg_at_3
435
+ value: 62.853
436
+ - type: ndcg_at_5
437
+ value: 65.59899999999999
438
+ - type: precision_at_1
439
+ value: 53.5
440
+ - type: precision_at_10
441
+ value: 8.309999999999999
442
+ - type: precision_at_100
443
+ value: 0.951
444
+ - type: precision_at_1000
445
+ value: 0.097
446
+ - type: precision_at_3
447
+ value: 23.1
448
+ - type: precision_at_5
449
+ value: 15.2
450
+ - type: recall_at_1
451
+ value: 53.5
452
+ - type: recall_at_10
453
+ value: 83.1
454
+ - type: recall_at_100
455
+ value: 95.1
456
+ - type: recall_at_1000
457
+ value: 97.39999999999999
458
+ - type: recall_at_3
459
+ value: 69.3
460
+ - type: recall_at_5
461
+ value: 76.0
462
+ - task:
463
+ type: Classification
464
+ dataset:
465
+ type: C-MTEB/IFlyTek-classification
466
+ name: MTEB IFlyTek
467
+ config: default
468
+ split: validation
469
+ revision: None
470
+ metrics:
471
+ - type: accuracy
472
+ value: 51.773759138130046
473
+ - type: f1
474
+ value: 40.38600802756481
475
+ - task:
476
+ type: Classification
477
+ dataset:
478
+ type: C-MTEB/JDReview-classification
479
+ name: MTEB JDReview
480
+ config: default
481
+ split: test
482
+ revision: None
483
+ metrics:
484
+ - type: accuracy
485
+ value: 88.48030018761726
486
+ - type: ap
487
+ value: 59.2732541555627
488
+ - type: f1
489
+ value: 83.58836007358619
490
+ - task:
491
+ type: STS
492
+ dataset:
493
+ type: C-MTEB/LCQMC
494
+ name: MTEB LCQMC
495
+ config: default
496
+ split: test
497
+ revision: None
498
+ metrics:
499
+ - type: cos_sim_pearson
500
+ value: 73.67511194245922
501
+ - type: cos_sim_spearman
502
+ value: 79.43347759067298
503
+ - type: euclidean_pearson
504
+ value: 79.04491504318766
505
+ - type: euclidean_spearman
506
+ value: 79.14478545356785
507
+ - type: manhattan_pearson
508
+ value: 79.03365022867428
509
+ - type: manhattan_spearman
510
+ value: 79.13172717619908
511
+ - task:
512
+ type: Retrieval
513
+ dataset:
514
+ type: C-MTEB/MMarcoRetrieval
515
+ name: MTEB MMarcoRetrieval
516
+ config: default
517
+ split: dev
518
+ revision: None
519
+ metrics:
520
+ - type: map_at_1
521
+ value: 67.184
522
+ - type: map_at_10
523
+ value: 76.24600000000001
524
+ - type: map_at_100
525
+ value: 76.563
526
+ - type: map_at_1000
527
+ value: 76.575
528
+ - type: map_at_3
529
+ value: 74.522
530
+ - type: map_at_5
531
+ value: 75.598
532
+ - type: mrr_at_1
533
+ value: 69.47
534
+ - type: mrr_at_10
535
+ value: 76.8
536
+ - type: mrr_at_100
537
+ value: 77.082
538
+ - type: mrr_at_1000
539
+ value: 77.093
540
+ - type: mrr_at_3
541
+ value: 75.29400000000001
542
+ - type: mrr_at_5
543
+ value: 76.24
544
+ - type: ndcg_at_1
545
+ value: 69.47
546
+ - type: ndcg_at_10
547
+ value: 79.81099999999999
548
+ - type: ndcg_at_100
549
+ value: 81.187
550
+ - type: ndcg_at_1000
551
+ value: 81.492
552
+ - type: ndcg_at_3
553
+ value: 76.536
554
+ - type: ndcg_at_5
555
+ value: 78.367
556
+ - type: precision_at_1
557
+ value: 69.47
558
+ - type: precision_at_10
559
+ value: 9.599
560
+ - type: precision_at_100
561
+ value: 1.026
562
+ - type: precision_at_1000
563
+ value: 0.105
564
+ - type: precision_at_3
565
+ value: 28.777
566
+ - type: precision_at_5
567
+ value: 18.232
568
+ - type: recall_at_1
569
+ value: 67.184
570
+ - type: recall_at_10
571
+ value: 90.211
572
+ - type: recall_at_100
573
+ value: 96.322
574
+ - type: recall_at_1000
575
+ value: 98.699
576
+ - type: recall_at_3
577
+ value: 81.556
578
+ - type: recall_at_5
579
+ value: 85.931
580
+ - task:
581
+ type: Classification
582
+ dataset:
583
+ type: mteb/amazon_massive_intent
584
+ name: MTEB MassiveIntentClassification (zh-CN)
585
+ config: zh-CN
586
+ split: test
587
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
588
+ metrics:
589
+ - type: accuracy
590
+ value: 76.96032279757901
591
+ - type: f1
592
+ value: 73.48052314033545
593
+ - task:
594
+ type: Classification
595
+ dataset:
596
+ type: mteb/amazon_massive_scenario
597
+ name: MTEB MassiveScenarioClassification (zh-CN)
598
+ config: zh-CN
599
+ split: test
600
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
601
+ metrics:
602
+ - type: accuracy
603
+ value: 84.64357767316744
604
+ - type: f1
605
+ value: 83.58250539497922
606
+ - task:
607
+ type: Retrieval
608
+ dataset:
609
+ type: C-MTEB/MedicalRetrieval
610
+ name: MTEB MedicalRetrieval
611
+ config: default
612
+ split: dev
613
+ revision: None
614
+ metrics:
615
+ - type: map_at_1
616
+ value: 56.00000000000001
617
+ - type: map_at_10
618
+ value: 62.066
619
+ - type: map_at_100
620
+ value: 62.553000000000004
621
+ - type: map_at_1000
622
+ value: 62.598
623
+ - type: map_at_3
624
+ value: 60.4
625
+ - type: map_at_5
626
+ value: 61.370000000000005
627
+ - type: mrr_at_1
628
+ value: 56.2
629
+ - type: mrr_at_10
630
+ value: 62.166
631
+ - type: mrr_at_100
632
+ value: 62.653000000000006
633
+ - type: mrr_at_1000
634
+ value: 62.699000000000005
635
+ - type: mrr_at_3
636
+ value: 60.5
637
+ - type: mrr_at_5
638
+ value: 61.47
639
+ - type: ndcg_at_1
640
+ value: 56.00000000000001
641
+ - type: ndcg_at_10
642
+ value: 65.199
643
+ - type: ndcg_at_100
644
+ value: 67.79899999999999
645
+ - type: ndcg_at_1000
646
+ value: 69.056
647
+ - type: ndcg_at_3
648
+ value: 61.814
649
+ - type: ndcg_at_5
650
+ value: 63.553000000000004
651
+ - type: precision_at_1
652
+ value: 56.00000000000001
653
+ - type: precision_at_10
654
+ value: 7.51
655
+ - type: precision_at_100
656
+ value: 0.878
657
+ - type: precision_at_1000
658
+ value: 0.098
659
+ - type: precision_at_3
660
+ value: 21.967
661
+ - type: precision_at_5
662
+ value: 14.02
663
+ - type: recall_at_1
664
+ value: 56.00000000000001
665
+ - type: recall_at_10
666
+ value: 75.1
667
+ - type: recall_at_100
668
+ value: 87.8
669
+ - type: recall_at_1000
670
+ value: 97.7
671
+ - type: recall_at_3
672
+ value: 65.9
673
+ - type: recall_at_5
674
+ value: 70.1
675
+ - task:
676
+ type: Reranking
677
+ dataset:
678
+ type: C-MTEB/Mmarco-reranking
679
+ name: MTEB MMarcoReranking
680
+ config: default
681
+ split: dev
682
+ revision: None
683
+ metrics:
684
+ - type: map
685
+ value: 32.74158258279793
686
+ - type: mrr
687
+ value: 31.56071428571428
688
+ - task:
689
+ type: Classification
690
+ dataset:
691
+ type: C-MTEB/MultilingualSentiment-classification
692
+ name: MTEB MultilingualSentiment
693
+ config: default
694
+ split: validation
695
+ revision: None
696
+ metrics:
697
+ - type: accuracy
698
+ value: 78.96666666666667
699
+ - type: f1
700
+ value: 78.82528563818045
701
+ - task:
702
+ type: PairClassification
703
+ dataset:
704
+ type: C-MTEB/OCNLI
705
+ name: MTEB Ocnli
706
+ config: default
707
+ split: validation
708
+ revision: None
709
+ metrics:
710
+ - type: cos_sim_accuracy
711
+ value: 83.54087709799674
712
+ - type: cos_sim_ap
713
+ value: 87.26170197077586
714
+ - type: cos_sim_f1
715
+ value: 84.7609561752988
716
+ - type: cos_sim_precision
717
+ value: 80.20735155513667
718
+ - type: cos_sim_recall
719
+ value: 89.86272439281943
720
+ - type: dot_accuracy
721
+ value: 72.22523010286952
722
+ - type: dot_ap
723
+ value: 79.51975358187732
724
+ - type: dot_f1
725
+ value: 76.32183908045977
726
+ - type: dot_precision
727
+ value: 67.58957654723126
728
+ - type: dot_recall
729
+ value: 87.64519535374869
730
+ - type: euclidean_accuracy
731
+ value: 82.0249052517596
732
+ - type: euclidean_ap
733
+ value: 85.32829948726406
734
+ - type: euclidean_f1
735
+ value: 83.24924318869829
736
+ - type: euclidean_precision
737
+ value: 79.71014492753623
738
+ - type: euclidean_recall
739
+ value: 87.11721224920802
740
+ - type: manhattan_accuracy
741
+ value: 82.13318895506227
742
+ - type: manhattan_ap
743
+ value: 85.28856869288006
744
+ - type: manhattan_f1
745
+ value: 83.34946757018393
746
+ - type: manhattan_precision
747
+ value: 76.94369973190348
748
+ - type: manhattan_recall
749
+ value: 90.91869060190075
750
+ - type: max_accuracy
751
+ value: 83.54087709799674
752
+ - type: max_ap
753
+ value: 87.26170197077586
754
+ - type: max_f1
755
+ value: 84.7609561752988
756
+ - task:
757
+ type: Classification
758
+ dataset:
759
+ type: C-MTEB/OnlineShopping-classification
760
+ name: MTEB OnlineShopping
761
+ config: default
762
+ split: test
763
+ revision: None
764
+ metrics:
765
+ - type: accuracy
766
+ value: 94.56
767
+ - type: ap
768
+ value: 92.80848436710805
769
+ - type: f1
770
+ value: 94.54951966576111
771
+ - task:
772
+ type: STS
773
+ dataset:
774
+ type: C-MTEB/PAWSX
775
+ name: MTEB PAWSX
776
+ config: default
777
+ split: test
778
+ revision: None
779
+ metrics:
780
+ - type: cos_sim_pearson
781
+ value: 39.0866558287863
782
+ - type: cos_sim_spearman
783
+ value: 45.9211126233312
784
+ - type: euclidean_pearson
785
+ value: 44.86568743222145
786
+ - type: euclidean_spearman
787
+ value: 45.63882757207507
788
+ - type: manhattan_pearson
789
+ value: 44.89480036909126
790
+ - type: manhattan_spearman
791
+ value: 45.65929449046206
792
+ - task:
793
+ type: STS
794
+ dataset:
795
+ type: C-MTEB/QBQTC
796
+ name: MTEB QBQTC
797
+ config: default
798
+ split: test
799
+ revision: None
800
+ metrics:
801
+ - type: cos_sim_pearson
802
+ value: 43.04701793979569
803
+ - type: cos_sim_spearman
804
+ value: 44.87491033760315
805
+ - type: euclidean_pearson
806
+ value: 36.2004061032567
807
+ - type: euclidean_spearman
808
+ value: 41.44823909683865
809
+ - type: manhattan_pearson
810
+ value: 36.136113427955095
811
+ - type: manhattan_spearman
812
+ value: 41.39225495993949
813
+ - task:
814
+ type: STS
815
+ dataset:
816
+ type: mteb/sts22-crosslingual-sts
817
+ name: MTEB STS22 (zh)
818
+ config: zh
819
+ split: test
820
+ revision: None
821
+ metrics:
822
+ - type: cos_sim_pearson
823
+ value: 61.65611315777857
824
+ - type: cos_sim_spearman
825
+ value: 64.4067673105648
826
+ - type: euclidean_pearson
827
+ value: 61.814977248797184
828
+ - type: euclidean_spearman
829
+ value: 63.99473350700169
830
+ - type: manhattan_pearson
831
+ value: 61.684304629588624
832
+ - type: manhattan_spearman
833
+ value: 63.97831213239316
834
+ - task:
835
+ type: STS
836
+ dataset:
837
+ type: C-MTEB/STSB
838
+ name: MTEB STSB
839
+ config: default
840
+ split: test
841
+ revision: None
842
+ metrics:
843
+ - type: cos_sim_pearson
844
+ value: 76.57324933064379
845
+ - type: cos_sim_spearman
846
+ value: 79.23602286949782
847
+ - type: euclidean_pearson
848
+ value: 80.28226284310948
849
+ - type: euclidean_spearman
850
+ value: 80.32210477608423
851
+ - type: manhattan_pearson
852
+ value: 80.27262188617811
853
+ - type: manhattan_spearman
854
+ value: 80.31619185039723
855
+ - task:
856
+ type: Reranking
857
+ dataset:
858
+ type: C-MTEB/T2Reranking
859
+ name: MTEB T2Reranking
860
+ config: default
861
+ split: dev
862
+ revision: None
863
+ metrics:
864
+ - type: map
865
+ value: 67.05266891356277
866
+ - type: mrr
867
+ value: 77.1906333623497
868
+ - task:
869
+ type: Retrieval
870
+ dataset:
871
+ type: C-MTEB/T2Retrieval
872
+ name: MTEB T2Retrieval
873
+ config: default
874
+ split: dev
875
+ revision: None
876
+ metrics:
877
+ - type: map_at_1
878
+ value: 28.212
879
+ - type: map_at_10
880
+ value: 78.932
881
+ - type: map_at_100
882
+ value: 82.51899999999999
883
+ - type: map_at_1000
884
+ value: 82.575
885
+ - type: map_at_3
886
+ value: 55.614
887
+ - type: map_at_5
888
+ value: 68.304
889
+ - type: mrr_at_1
890
+ value: 91.211
891
+ - type: mrr_at_10
892
+ value: 93.589
893
+ - type: mrr_at_100
894
+ value: 93.659
895
+ - type: mrr_at_1000
896
+ value: 93.662
897
+ - type: mrr_at_3
898
+ value: 93.218
899
+ - type: mrr_at_5
900
+ value: 93.453
901
+ - type: ndcg_at_1
902
+ value: 91.211
903
+ - type: ndcg_at_10
904
+ value: 86.24000000000001
905
+ - type: ndcg_at_100
906
+ value: 89.614
907
+ - type: ndcg_at_1000
908
+ value: 90.14
909
+ - type: ndcg_at_3
910
+ value: 87.589
911
+ - type: ndcg_at_5
912
+ value: 86.265
913
+ - type: precision_at_1
914
+ value: 91.211
915
+ - type: precision_at_10
916
+ value: 42.626
917
+ - type: precision_at_100
918
+ value: 5.043
919
+ - type: precision_at_1000
920
+ value: 0.517
921
+ - type: precision_at_3
922
+ value: 76.42
923
+ - type: precision_at_5
924
+ value: 64.045
925
+ - type: recall_at_1
926
+ value: 28.212
927
+ - type: recall_at_10
928
+ value: 85.223
929
+ - type: recall_at_100
930
+ value: 96.229
931
+ - type: recall_at_1000
932
+ value: 98.849
933
+ - type: recall_at_3
934
+ value: 57.30800000000001
935
+ - type: recall_at_5
936
+ value: 71.661
937
+ - task:
938
+ type: Classification
939
+ dataset:
940
+ type: C-MTEB/TNews-classification
941
+ name: MTEB TNews
942
+ config: default
943
+ split: validation
944
+ revision: None
945
+ metrics:
946
+ - type: accuracy
947
+ value: 54.385000000000005
948
+ - type: f1
949
+ value: 52.38762400903556
950
+ - task:
951
+ type: Clustering
952
+ dataset:
953
+ type: C-MTEB/ThuNewsClusteringP2P
954
+ name: MTEB ThuNewsClusteringP2P
955
+ config: default
956
+ split: test
957
+ revision: None
958
+ metrics:
959
+ - type: v_measure
960
+ value: 74.55283855942916
961
+ - task:
962
+ type: Clustering
963
+ dataset:
964
+ type: C-MTEB/ThuNewsClusteringS2S
965
+ name: MTEB ThuNewsClusteringS2S
966
+ config: default
967
+ split: test
968
+ revision: None
969
+ metrics:
970
+ - type: v_measure
971
+ value: 68.55115316700493
972
+ - task:
973
+ type: Retrieval
974
+ dataset:
975
+ type: C-MTEB/VideoRetrieval
976
+ name: MTEB VideoRetrieval
977
+ config: default
978
+ split: dev
979
+ revision: None
980
+ metrics:
981
+ - type: map_at_1
982
+ value: 58.8
983
+ - type: map_at_10
984
+ value: 69.035
985
+ - type: map_at_100
986
+ value: 69.52000000000001
987
+ - type: map_at_1000
988
+ value: 69.529
989
+ - type: map_at_3
990
+ value: 67.417
991
+ - type: map_at_5
992
+ value: 68.407
993
+ - type: mrr_at_1
994
+ value: 58.8
995
+ - type: mrr_at_10
996
+ value: 69.035
997
+ - type: mrr_at_100
998
+ value: 69.52000000000001
999
+ - type: mrr_at_1000
1000
+ value: 69.529
1001
+ - type: mrr_at_3
1002
+ value: 67.417
1003
+ - type: mrr_at_5
1004
+ value: 68.407
1005
+ - type: ndcg_at_1
1006
+ value: 58.8
1007
+ - type: ndcg_at_10
1008
+ value: 73.395
1009
+ - type: ndcg_at_100
1010
+ value: 75.62
1011
+ - type: ndcg_at_1000
1012
+ value: 75.90299999999999
1013
+ - type: ndcg_at_3
1014
+ value: 70.11800000000001
1015
+ - type: ndcg_at_5
1016
+ value: 71.87400000000001
1017
+ - type: precision_at_1
1018
+ value: 58.8
1019
+ - type: precision_at_10
1020
+ value: 8.68
1021
+ - type: precision_at_100
1022
+ value: 0.9690000000000001
1023
+ - type: precision_at_1000
1024
+ value: 0.099
1025
+ - type: precision_at_3
1026
+ value: 25.967000000000002
1027
+ - type: precision_at_5
1028
+ value: 16.42
1029
+ - type: recall_at_1
1030
+ value: 58.8
1031
+ - type: recall_at_10
1032
+ value: 86.8
1033
+ - type: recall_at_100
1034
+ value: 96.89999999999999
1035
+ - type: recall_at_1000
1036
+ value: 99.2
1037
+ - type: recall_at_3
1038
+ value: 77.9
1039
+ - type: recall_at_5
1040
+ value: 82.1
1041
+ - task:
1042
+ type: Classification
1043
+ dataset:
1044
+ type: C-MTEB/waimai-classification
1045
+ name: MTEB Waimai
1046
+ config: default
1047
+ split: test
1048
+ revision: None
1049
+ metrics:
1050
+ - type: accuracy
1051
+ value: 89.42
1052
+ - type: ap
1053
+ value: 75.35978503182068
1054
+ - type: f1
1055
+ value: 88.01006394348263
1056
+ ---
1057
+
1058
+
1059
+ ## Yinka
1060
+
1061
+ Yinka embedding 模型是在开原模型[stella-v3.5-mrl](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d)上续训的,采用了[piccolo2](https://huggingface.co/sensenova/piccolo-large-zh-v2)提到的多任务混合损失(multi-task hybrid loss training)。同样本模型也支持了可变的向量维度。
1062
+
1063
+ ## 使用方法
1064
+ 该模型的使用方法同[stella-v3.5-mrl](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d)一样, 无需任何前缀。
1065
+ ```python
1066
+ from sentence_transformers import SentenceTransformer
1067
+ from sklearn.preprocessing import normalize
1068
+
1069
+ model = SentenceTransformer("")
1070
+ # 注意先不要normalize! 选取前n维后再normalize
1071
+ vectors = model.encode(["text1", "text2"], normalize_embeddings=False)
1072
+ print(vectors.shape) # shape is [2,1792]
1073
+ n_dims = 768
1074
+ cut_vecs = normalize(vectors[:, :n_dims])
1075
+ ```
1076
+
1077
+ ## 训练细节
1078
+ TODO
1079
+
1080
+ ## Licence
1081
+ 本模型采用MIT licence.
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "pad_token_id": 0,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.36.2",
24
+ "type_vocab_size": 2,
25
+ "use_cache": true,
26
+ "vocab_size": 21128
27
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80075250018c65eba25c69bcc56531bee813eeebf25b0e2aab55da72228d371a
3
+ size 654772222
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff