Clawoo commited on
Commit
2464fed
·
1 Parent(s): e798ea3

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -54.88 +/- 26.18
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f05539d5820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f05539d58b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f05539d5940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f05539d59d0>", "_build": "<function ActorCriticPolicy._build at 0x7f05539d5a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f05539d5af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f05539d5b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f05539d5c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f05539d5ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f05539d5d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f05539d5dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f05539d3e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 311296, "_total_timesteps": 300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670705614665459977, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBpS73DyUG6lxTHuxouyje+s6A6A7gVtwAAgD8AAIA/ffuZPh8dgLlJHYu6ttjGPDGG1D0xAqS9AACAPwAAgD8AFRI+xKW8PhORUj69NIu+SEk0PgbnzT0AAAAAAAAAAKNFf75PUUw900NOPvTJgr7FuQC+Ms6hPgAAAAAAAAAA86W6PdBsoD9dnqI86riLvh5RYT5mKaU9AAAAAAAAAAB62uK+XdrkPiqDj71Zoqe+t95APeijUj4AAAAAAAAAAH6bKr9SI00+YfcOv4cyZr4sqAc+DnymvgAAAAAAAAAA4CzTvgq3Jr2HuyC7tv/5ODN3Yb0kiYc6AACAPwAAgD9mnAs+H8XLu3vD9TxMz2W7Ab83vcirQrwAAIA/AACAP+aey73DsVO6HVwSPF6wMza6wlo6zMEjNQAAgD8AAIA/M7ipPSnkI7pycpc736Z+tp3gKLstWnO1AACAPwAAgD9/eyu/JEtTvmquST2C13A8X8CcvgmjJDwAAAAAAAAAAKDnXb+2vhi83zePvGxNVj0HGp29srtJOwAAAAAAAAAAhbmivptB0rzf/gk8sL6qvBLQFj4lEpo9AACAPwAAAABawcS+3z+nPEjKBz6X0Ou8d+QDvvrkCD0AAAAAAACAP3ZSXb+IhLa8NW8TO9M1SriUdMG8RfFMugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.037653333333333316, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3pGx2vwfKcCUhpRSlIwBbJRL/IwBdJRHQGT7IOH31z11fZQoaAZoCWgPQwjWU6uvrsRCwJSGlFKUaBVLr2gWR0BlCA51eSjhdX2UKGgGaAloD0MIdCZtqu69NUCUhpRSlGgVS8xoFkdAZQu9s7+1jXV9lChoBmgJaA9DCNZwkXu61jPAlIaUUpRoFUv8aBZHQGUl9Htnf2t1fZQoaAZoCWgPQwhFuMmoMgRCQJSGlFKUaBVLxWgWR0BlK1K28Zk1dX2UKGgGaAloD0MIpDUGnRDcRsCUhpRSlGgVS8xoFkdAZTBBguyu6nV9lChoBmgJaA9DCErrbwnAw0BAlIaUUpRoFUvfaBZHQGU0ndoFmnR1fZQoaAZoCWgPQwivXdpwWIo9QJSGlFKUaBVN6ANoFkdAZTUYwZflZHV9lChoBmgJaA9DCA4xXvOq5kRAlIaUUpRoFU3oA2gWR0BlPRib2Dg7dX2UKGgGaAloD0MIn1kSoKYyOkCUhpRSlGgVS71oFkdAZT8VM23rlnV9lChoBmgJaA9DCLqhKTv9AArAlIaUUpRoFUuGaBZHQGXozUy57PZ1fZQoaAZoCWgPQwiT5Lm+j45gQJSGlFKUaBVN6ANoFkdAZe7rVvuPWHV9lChoBmgJaA9DCL99HThn5kRAlIaUUpRoFUuSaBZHQGX0zNdJJ5F1fZQoaAZoCWgPQwicTx2rlCZGwJSGlFKUaBVNFgFoFkdAZf22iL2pQ3V9lChoBmgJaA9DCF6c+GpHEQZAlIaUUpRoFUuraBZHQGYkGXgLqlh1fZQoaAZoCWgPQwgTKGIRwzRBQJSGlFKUaBVL52gWR0BmRxR4yGi6dX2UKGgGaAloD0MIAwgfSrQMPkCUhpRSlGgVTegDaBZHQGZhBakhzNl1fZQoaAZoCWgPQwiFlnX/WFgdQJSGlFKUaBVLomgWR0BmmC8UVSGbdX2UKGgGaAloD0MIqfkq+dhtJUCUhpRSlGgVTegDaBZHQGa925xzaK11fZQoaAZoCWgPQwgyIeaSqsE3wJSGlFKUaBVLpWgWR0Bm+Fc8kleGdX2UKGgGaAloD0MI3jmUoSoCV0CUhpRSlGgVTegDaBZHQGce1uivgWJ1fZQoaAZoCWgPQwhh304iwmFHQJSGlFKUaBVN6ANoFkdAZyIfRNRFZ3V9lChoBmgJaA9DCKEvvf254FxAlIaUUpRoFU3oA2gWR0BnNIDs+mm+dX2UKGgGaAloD0MIvvc3aK/OE0CUhpRSlGgVTegDaBZHQGdX+cx0uDl1fZQoaAZoCWgPQwikxoSYS/RAwJSGlFKUaBVLimgWR0BnbtDlYEGJdX2UKGgGaAloD0MIoPmcu12v67+UhpRSlGgVTegDaBZHQGd4T1schkl1fZQoaAZoCWgPQwimCkYldbojwJSGlFKUaBVL5WgWR0Bnf+Z1FH8TdX2UKGgGaAloD0MIusDlsWYkH8CUhpRSlGgVS8ZoFkdAZ5RywOe8PHV9lChoBmgJaA9DCB0hA3l240tAlIaUUpRoFU3oA2gWR0BnqRoPCl7/dX2UKGgGaAloD0MIOPktOlk1U0CUhpRSlGgVTegDaBZHQGe16+WWyC51fZQoaAZoCWgPQwhkldIzvR5QQJSGlFKUaBVN6ANoFkdAZ7ahW5painV9lChoBmgJaA9DCIaqmEo/O1tAlIaUUpRoFU3oA2gWR0BnwzmfXf65dX2UKGgGaAloD0MID5iHTHmRYsCUhpRSlGgVTcYBaBZHQGfFhdt2s7x1fZQoaAZoCWgPQwjIQ9/dyitYQJSGlFKUaBVN6ANoFkdAZ8ZpRoAXEnV9lChoBmgJaA9DCFrY0w5/8GTAlIaUUpRoFU18AmgWR0BnyBtzjm0WdX2UKGgGaAloD0MIbTttjQgyRUCUhpRSlGgVS89oFkdAZ8fvoePq93V9lChoBmgJaA9DCOf9f5ww9TvAlIaUUpRoFUvuaBZHQGh9mNzbN8p1fZQoaAZoCWgPQwhW2AxwQQRCQJSGlFKUaBVN6ANoFkdAaH7NBWxQi3V9lChoBmgJaA9DCGed8X1xDVdAlIaUUpRoFU3oA2gWR0Boh7rkbPyDdX2UKGgGaAloD0MIYeC593AXQ8CUhpRSlGgVS7hoFkdAaI55j6N2knV9lChoBmgJaA9DCE7yI37FQERAlIaUUpRoFU3oA2gWR0BorMkMTewcdX2UKGgGaAloD0MIjWMke4TaJ8CUhpRSlGgVS+9oFkdAaK2Glhw2l3V9lChoBmgJaA9DCPNzQ1N2IiHAlIaUUpRoFUvraBZHQGiumdqcmSh1fZQoaAZoCWgPQwg5fqg0YjJLwJSGlFKUaBVL/GgWR0BotOpn6EamdX2UKGgGaAloD0MIOBWpMLaaTMCUhpRSlGgVTTIBaBZHQGjDGnXNC7d1fZQoaAZoCWgPQwhLAtTUsg0lQJSGlFKUaBVL32gWR0Bo3egam4y5dX2UKGgGaAloD0MIlPqytFP1TsCUhpRSlGgVTRsBaBZHQGjiDwpe/pN1fZQoaAZoCWgPQwiKH2PuWjI1wJSGlFKUaBVLzmgWR0Bo+RRQ79ycdX2UKGgGaAloD0MIrRQCucQLYMCUhpRSlGgVTYABaBZHQGkKe7UXpGF1fZQoaAZoCWgPQwgbDeAtkGARwJSGlFKUaBVLpGgWR0BpSQmXw9aEdX2UKGgGaAloD0MIiq92FOewTUCUhpRSlGgVTegDaBZHQGmeysCDEm91fZQoaAZoCWgPQwg900uMZU5UwJSGlFKUaBVNIQFoFkdAabG9PDYRNHV9lChoBmgJaA9DCCNpN/qYM1BAlIaUUpRoFU3oA2gWR0Bp4WGZeAuqdX2UKGgGaAloD0MI3ZiesMQbMUCUhpRSlGgVTegDaBZHQGn2J3os7Mh1fZQoaAZoCWgPQwiOklfnGN5WQJSGlFKUaBVN6ANoFkdAag0nNxEORXV9lChoBmgJaA9DCJjBGJEoSEZAlIaUUpRoFU3oA2gWR0BqIwvalDWtdX2UKGgGaAloD0MIRPzDlh7FRMCUhpRSlGgVTegDaBZHQGoxmRmseXB1fZQoaAZoCWgPQwhw6gPJO1ciQJSGlFKUaBVN6ANoFkdAakOV8CxNZnV9lChoBmgJaA9DCMFTyJV6DF5AlIaUUpRoFU3oA2gWR0BrI2DL8rI6dX2UKGgGaAloD0MIxqhr7X0q87+UhpRSlGgVS8FoFkdAayhWH1vl2nV9lChoBmgJaA9DCNO9TurL21bAlIaUUpRoFU0IAWgWR0BrKEtXgccVdX2UKGgGaAloD0MIm8sNhjpsEkCUhpRSlGgVTegDaBZHQGtgrrPdEb51fZQoaAZoCWgPQwgiOZm4VRw0QJSGlFKUaBVN6ANoFkdAa2JJT2nKn3V9lChoBmgJaA9DCG6LMhtkfFNAlIaUUpRoFU3oA2gWR0BrbRusLfDUdX2UKGgGaAloD0MIDeGYZU/sUECUhpRSlGgVTegDaBZHQGt/apo9LYh1fZQoaAZoCWgPQwiXPJ6WHxxYQJSGlFKUaBVN6ANoFkdAa6Df8dgfEHV9lChoBmgJaA9DCF9cqtIW9x/AlIaUUpRoFU3oA2gWR0Brpij3225QdX2UKGgGaAloD0MIChAFM6ZgzT+UhpRSlGgVS/poFkdAa/GH0se4kXV9lChoBmgJaA9DCIQsCyb+uknAlIaUUpRoFU1MAWgWR0Br/ByZKFqSdX2UKGgGaAloD0MIfxXgu828YUCUhpRSlGgVTegDaBZHQGwPHNX5nDl1fZQoaAZoCWgPQwijI7n8h5wtwJSGlFKUaBVNHgFoFkdAbCy4m1IAfnV9lChoBmgJaA9DCMxFfCdmmVTAlIaUUpRoFU00AWgWR0BsQH99+gDidX2UKGgGaAloD0MIcQD9vn/LT0CUhpRSlGgVTegDaBZHQGxaUpmVZ9x1fZQoaAZoCWgPQwit30xMF3Y/QJSGlFKUaBVN6ANoFkdAbGmrAgxJunV9lChoBmgJaA9DCECFI0ilrEfAlIaUUpRoFU0fAWgWR0Bsir987ZFodX2UKGgGaAloD0MIUG9GzVe9NkCUhpRSlGgVTegDaBZHQGyOiPhhpg11fZQoaAZoCWgPQwgaho+IKdlaQJSGlFKUaBVN6ANoFkdAbLA0CRwIdHV9lChoBmgJaA9DCE6aBkXz2EbAlIaUUpRoFU3oA2gWR0BszwMF2V3VdX2UKGgGaAloD0MIfEW3XtMOYECUhpRSlGgVTegDaBZHQGzgKT0QK8d1fZQoaAZoCWgPQwjb+1QVGkFdQJSGlFKUaBVN6ANoFkdAbbtjtoi9qXV9lChoBmgJaA9DCFml9EwvtUZAlIaUUpRoFU3oA2gWR0BtwFdC3PRidX2UKGgGaAloD0MInFCIgEN3WUCUhpRSlGgVTegDaBZHQG3ANHpbD/F1fZQoaAZoCWgPQwgqWONsOtokwJSGlFKUaBVL0WgWR0Bt0/WnTAnEdX2UKGgGaAloD0MIOQ68Wu4kOkCUhpRSlGgVS+hoFkdAbe/Up/gBLnV9lChoBmgJaA9DCMhAnl2+QlhAlIaUUpRoFU3oA2gWR0Bt8+Ad4mkWdX2UKGgGaAloD0MI9OFZgoxRXECUhpRSlGgVTegDaBZHQG39h55Z8rt1fZQoaAZoCWgPQwgmNh/XhuIyQJSGlFKUaBVNEgFoFkdAbnibdadMCnV9lChoBmgJaA9DCOf7qfHSO09AlIaUUpRoFU3oA2gWR0Bun31BdD6WdX2UKGgGaAloD0MIL6hvmVPgYECUhpRSlGgVTegDaBZHQG64Kbz9S/F1fZQoaAZoCWgPQwiH3uLhPcpbQJSGlFKUaBVN6ANoFkdAbtfVbRneznV9lChoBmgJaA9DCNdoOdBD7SlAlIaUUpRoFU3oA2gWR0Bu7Iw0waisdX2UKGgGaAloD0MIGD4ipkRqQUCUhpRSlGgVTegDaBZHQG8G3SSeRPp1fZQoaAZoCWgPQwjvVMA9zzRQQJSGlFKUaBVN6ANoFkdAbxcT/Q0GeXV9lChoBmgJaA9DCC3OGOYE6TDAlIaUUpRoFUvfaBZHQG8iEDIRywR1fZQoaAZoCWgPQwifsMQDygdeQJSGlFKUaBVN6ANoFkdAbzh7Kq4pdHV9lChoBmgJaA9DCLVv7q8eV11AlIaUUpRoFU3oA2gWR0BvO//echC/dX2UKGgGaAloD0MIMA4uHXOaPkCUhpRSlGgVS/9oFkdAb0Pr7fpD/nV9lChoBmgJaA9DCPw2xHjNlVtAlIaUUpRoFU3oA2gWR0BvWlyvLX+VdX2UKGgGaAloD0MIDhDM0eNLPsCUhpRSlGgVTQwBaBZHQG9jI1k1/Dt1fZQoaAZoCWgPQwhZ2qm53KJFwJSGlFKUaBVNEwFoFkdAb55+wTufEnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 76, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0410de2bd44dd63b77800fdc8d6b19a594ddbc5faa76fdf3ce1d7ef3a79fd88c
3
+ size 147175
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f05539d5820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f05539d58b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f05539d5940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f05539d59d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f05539d5a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f05539d5af0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f05539d5b80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f05539d5c10>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f05539d5ca0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f05539d5d30>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f05539d5dc0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f05539d3e10>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 311296,
46
+ "_total_timesteps": 300000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670705614665459977,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBpS73DyUG6lxTHuxouyje+s6A6A7gVtwAAgD8AAIA/ffuZPh8dgLlJHYu6ttjGPDGG1D0xAqS9AACAPwAAgD8AFRI+xKW8PhORUj69NIu+SEk0PgbnzT0AAAAAAAAAAKNFf75PUUw900NOPvTJgr7FuQC+Ms6hPgAAAAAAAAAA86W6PdBsoD9dnqI86riLvh5RYT5mKaU9AAAAAAAAAAB62uK+XdrkPiqDj71Zoqe+t95APeijUj4AAAAAAAAAAH6bKr9SI00+YfcOv4cyZr4sqAc+DnymvgAAAAAAAAAA4CzTvgq3Jr2HuyC7tv/5ODN3Yb0kiYc6AACAPwAAgD9mnAs+H8XLu3vD9TxMz2W7Ab83vcirQrwAAIA/AACAP+aey73DsVO6HVwSPF6wMza6wlo6zMEjNQAAgD8AAIA/M7ipPSnkI7pycpc736Z+tp3gKLstWnO1AACAPwAAgD9/eyu/JEtTvmquST2C13A8X8CcvgmjJDwAAAAAAAAAAKDnXb+2vhi83zePvGxNVj0HGp29srtJOwAAAAAAAAAAhbmivptB0rzf/gk8sL6qvBLQFj4lEpo9AACAPwAAAABawcS+3z+nPEjKBz6X0Ou8d+QDvvrkCD0AAAAAAACAP3ZSXb+IhLa8NW8TO9M1SriUdMG8RfFMugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.037653333333333316,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3pGx2vwfKcCUhpRSlIwBbJRL/IwBdJRHQGT7IOH31z11fZQoaAZoCWgPQwjWU6uvrsRCwJSGlFKUaBVLr2gWR0BlCA51eSjhdX2UKGgGaAloD0MIdCZtqu69NUCUhpRSlGgVS8xoFkdAZQu9s7+1jXV9lChoBmgJaA9DCNZwkXu61jPAlIaUUpRoFUv8aBZHQGUl9Htnf2t1fZQoaAZoCWgPQwhFuMmoMgRCQJSGlFKUaBVLxWgWR0BlK1K28Zk1dX2UKGgGaAloD0MIpDUGnRDcRsCUhpRSlGgVS8xoFkdAZTBBguyu6nV9lChoBmgJaA9DCErrbwnAw0BAlIaUUpRoFUvfaBZHQGU0ndoFmnR1fZQoaAZoCWgPQwivXdpwWIo9QJSGlFKUaBVN6ANoFkdAZTUYwZflZHV9lChoBmgJaA9DCA4xXvOq5kRAlIaUUpRoFU3oA2gWR0BlPRib2Dg7dX2UKGgGaAloD0MIn1kSoKYyOkCUhpRSlGgVS71oFkdAZT8VM23rlnV9lChoBmgJaA9DCLqhKTv9AArAlIaUUpRoFUuGaBZHQGXozUy57PZ1fZQoaAZoCWgPQwiT5Lm+j45gQJSGlFKUaBVN6ANoFkdAZe7rVvuPWHV9lChoBmgJaA9DCL99HThn5kRAlIaUUpRoFUuSaBZHQGX0zNdJJ5F1fZQoaAZoCWgPQwicTx2rlCZGwJSGlFKUaBVNFgFoFkdAZf22iL2pQ3V9lChoBmgJaA9DCF6c+GpHEQZAlIaUUpRoFUuraBZHQGYkGXgLqlh1fZQoaAZoCWgPQwgTKGIRwzRBQJSGlFKUaBVL52gWR0BmRxR4yGi6dX2UKGgGaAloD0MIAwgfSrQMPkCUhpRSlGgVTegDaBZHQGZhBakhzNl1fZQoaAZoCWgPQwiFlnX/WFgdQJSGlFKUaBVLomgWR0BmmC8UVSGbdX2UKGgGaAloD0MIqfkq+dhtJUCUhpRSlGgVTegDaBZHQGa925xzaK11fZQoaAZoCWgPQwgyIeaSqsE3wJSGlFKUaBVLpWgWR0Bm+Fc8kleGdX2UKGgGaAloD0MI3jmUoSoCV0CUhpRSlGgVTegDaBZHQGce1uivgWJ1fZQoaAZoCWgPQwhh304iwmFHQJSGlFKUaBVN6ANoFkdAZyIfRNRFZ3V9lChoBmgJaA9DCKEvvf254FxAlIaUUpRoFU3oA2gWR0BnNIDs+mm+dX2UKGgGaAloD0MIvvc3aK/OE0CUhpRSlGgVTegDaBZHQGdX+cx0uDl1fZQoaAZoCWgPQwikxoSYS/RAwJSGlFKUaBVLimgWR0BnbtDlYEGJdX2UKGgGaAloD0MIoPmcu12v67+UhpRSlGgVTegDaBZHQGd4T1schkl1fZQoaAZoCWgPQwimCkYldbojwJSGlFKUaBVL5WgWR0Bnf+Z1FH8TdX2UKGgGaAloD0MIusDlsWYkH8CUhpRSlGgVS8ZoFkdAZ5RywOe8PHV9lChoBmgJaA9DCB0hA3l240tAlIaUUpRoFU3oA2gWR0BnqRoPCl7/dX2UKGgGaAloD0MIOPktOlk1U0CUhpRSlGgVTegDaBZHQGe16+WWyC51fZQoaAZoCWgPQwhkldIzvR5QQJSGlFKUaBVN6ANoFkdAZ7ahW5painV9lChoBmgJaA9DCIaqmEo/O1tAlIaUUpRoFU3oA2gWR0BnwzmfXf65dX2UKGgGaAloD0MID5iHTHmRYsCUhpRSlGgVTcYBaBZHQGfFhdt2s7x1fZQoaAZoCWgPQwjIQ9/dyitYQJSGlFKUaBVN6ANoFkdAZ8ZpRoAXEnV9lChoBmgJaA9DCFrY0w5/8GTAlIaUUpRoFU18AmgWR0BnyBtzjm0WdX2UKGgGaAloD0MIbTttjQgyRUCUhpRSlGgVS89oFkdAZ8fvoePq93V9lChoBmgJaA9DCOf9f5ww9TvAlIaUUpRoFUvuaBZHQGh9mNzbN8p1fZQoaAZoCWgPQwhW2AxwQQRCQJSGlFKUaBVN6ANoFkdAaH7NBWxQi3V9lChoBmgJaA9DCGed8X1xDVdAlIaUUpRoFU3oA2gWR0Boh7rkbPyDdX2UKGgGaAloD0MIYeC593AXQ8CUhpRSlGgVS7hoFkdAaI55j6N2knV9lChoBmgJaA9DCE7yI37FQERAlIaUUpRoFU3oA2gWR0BorMkMTewcdX2UKGgGaAloD0MIjWMke4TaJ8CUhpRSlGgVS+9oFkdAaK2Glhw2l3V9lChoBmgJaA9DCPNzQ1N2IiHAlIaUUpRoFUvraBZHQGiumdqcmSh1fZQoaAZoCWgPQwg5fqg0YjJLwJSGlFKUaBVL/GgWR0BotOpn6EamdX2UKGgGaAloD0MIOBWpMLaaTMCUhpRSlGgVTTIBaBZHQGjDGnXNC7d1fZQoaAZoCWgPQwhLAtTUsg0lQJSGlFKUaBVL32gWR0Bo3egam4y5dX2UKGgGaAloD0MIlPqytFP1TsCUhpRSlGgVTRsBaBZHQGjiDwpe/pN1fZQoaAZoCWgPQwiKH2PuWjI1wJSGlFKUaBVLzmgWR0Bo+RRQ79ycdX2UKGgGaAloD0MIrRQCucQLYMCUhpRSlGgVTYABaBZHQGkKe7UXpGF1fZQoaAZoCWgPQwgbDeAtkGARwJSGlFKUaBVLpGgWR0BpSQmXw9aEdX2UKGgGaAloD0MIiq92FOewTUCUhpRSlGgVTegDaBZHQGmeysCDEm91fZQoaAZoCWgPQwg900uMZU5UwJSGlFKUaBVNIQFoFkdAabG9PDYRNHV9lChoBmgJaA9DCCNpN/qYM1BAlIaUUpRoFU3oA2gWR0Bp4WGZeAuqdX2UKGgGaAloD0MI3ZiesMQbMUCUhpRSlGgVTegDaBZHQGn2J3os7Mh1fZQoaAZoCWgPQwiOklfnGN5WQJSGlFKUaBVN6ANoFkdAag0nNxEORXV9lChoBmgJaA9DCJjBGJEoSEZAlIaUUpRoFU3oA2gWR0BqIwvalDWtdX2UKGgGaAloD0MIRPzDlh7FRMCUhpRSlGgVTegDaBZHQGoxmRmseXB1fZQoaAZoCWgPQwhw6gPJO1ciQJSGlFKUaBVN6ANoFkdAakOV8CxNZnV9lChoBmgJaA9DCMFTyJV6DF5AlIaUUpRoFU3oA2gWR0BrI2DL8rI6dX2UKGgGaAloD0MIxqhr7X0q87+UhpRSlGgVS8FoFkdAayhWH1vl2nV9lChoBmgJaA9DCNO9TurL21bAlIaUUpRoFU0IAWgWR0BrKEtXgccVdX2UKGgGaAloD0MIm8sNhjpsEkCUhpRSlGgVTegDaBZHQGtgrrPdEb51fZQoaAZoCWgPQwgiOZm4VRw0QJSGlFKUaBVN6ANoFkdAa2JJT2nKn3V9lChoBmgJaA9DCG6LMhtkfFNAlIaUUpRoFU3oA2gWR0BrbRusLfDUdX2UKGgGaAloD0MIDeGYZU/sUECUhpRSlGgVTegDaBZHQGt/apo9LYh1fZQoaAZoCWgPQwiXPJ6WHxxYQJSGlFKUaBVN6ANoFkdAa6Df8dgfEHV9lChoBmgJaA9DCF9cqtIW9x/AlIaUUpRoFU3oA2gWR0Brpij3225QdX2UKGgGaAloD0MIChAFM6ZgzT+UhpRSlGgVS/poFkdAa/GH0se4kXV9lChoBmgJaA9DCIQsCyb+uknAlIaUUpRoFU1MAWgWR0Br/ByZKFqSdX2UKGgGaAloD0MIfxXgu828YUCUhpRSlGgVTegDaBZHQGwPHNX5nDl1fZQoaAZoCWgPQwijI7n8h5wtwJSGlFKUaBVNHgFoFkdAbCy4m1IAfnV9lChoBmgJaA9DCMxFfCdmmVTAlIaUUpRoFU00AWgWR0BsQH99+gDidX2UKGgGaAloD0MIcQD9vn/LT0CUhpRSlGgVTegDaBZHQGxaUpmVZ9x1fZQoaAZoCWgPQwit30xMF3Y/QJSGlFKUaBVN6ANoFkdAbGmrAgxJunV9lChoBmgJaA9DCECFI0ilrEfAlIaUUpRoFU0fAWgWR0Bsir987ZFodX2UKGgGaAloD0MIUG9GzVe9NkCUhpRSlGgVTegDaBZHQGyOiPhhpg11fZQoaAZoCWgPQwgaho+IKdlaQJSGlFKUaBVN6ANoFkdAbLA0CRwIdHV9lChoBmgJaA9DCE6aBkXz2EbAlIaUUpRoFU3oA2gWR0BszwMF2V3VdX2UKGgGaAloD0MIfEW3XtMOYECUhpRSlGgVTegDaBZHQGzgKT0QK8d1fZQoaAZoCWgPQwjb+1QVGkFdQJSGlFKUaBVN6ANoFkdAbbtjtoi9qXV9lChoBmgJaA9DCFml9EwvtUZAlIaUUpRoFU3oA2gWR0BtwFdC3PRidX2UKGgGaAloD0MInFCIgEN3WUCUhpRSlGgVTegDaBZHQG3ANHpbD/F1fZQoaAZoCWgPQwgqWONsOtokwJSGlFKUaBVL0WgWR0Bt0/WnTAnEdX2UKGgGaAloD0MIOQ68Wu4kOkCUhpRSlGgVS+hoFkdAbe/Up/gBLnV9lChoBmgJaA9DCMhAnl2+QlhAlIaUUpRoFU3oA2gWR0Bt8+Ad4mkWdX2UKGgGaAloD0MI9OFZgoxRXECUhpRSlGgVTegDaBZHQG39h55Z8rt1fZQoaAZoCWgPQwgmNh/XhuIyQJSGlFKUaBVNEgFoFkdAbnibdadMCnV9lChoBmgJaA9DCOf7qfHSO09AlIaUUpRoFU3oA2gWR0Bun31BdD6WdX2UKGgGaAloD0MIL6hvmVPgYECUhpRSlGgVTegDaBZHQG64Kbz9S/F1fZQoaAZoCWgPQwiH3uLhPcpbQJSGlFKUaBVN6ANoFkdAbtfVbRneznV9lChoBmgJaA9DCNdoOdBD7SlAlIaUUpRoFU3oA2gWR0Bu7Iw0waisdX2UKGgGaAloD0MIGD4ipkRqQUCUhpRSlGgVTegDaBZHQG8G3SSeRPp1fZQoaAZoCWgPQwjvVMA9zzRQQJSGlFKUaBVN6ANoFkdAbxcT/Q0GeXV9lChoBmgJaA9DCC3OGOYE6TDAlIaUUpRoFUvfaBZHQG8iEDIRywR1fZQoaAZoCWgPQwifsMQDygdeQJSGlFKUaBVN6ANoFkdAbzh7Kq4pdHV9lChoBmgJaA9DCLVv7q8eV11AlIaUUpRoFU3oA2gWR0BvO//echC/dX2UKGgGaAloD0MIMA4uHXOaPkCUhpRSlGgVS/9oFkdAb0Pr7fpD/nV9lChoBmgJaA9DCPw2xHjNlVtAlIaUUpRoFU3oA2gWR0BvWlyvLX+VdX2UKGgGaAloD0MIDhDM0eNLPsCUhpRSlGgVTQwBaBZHQG9jI1k1/Dt1fZQoaAZoCWgPQwhZ2qm53KJFwJSGlFKUaBVNEwFoFkdAb55+wTufEnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 76,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42bfb1db204e3f865bb9b2142732c8c39a049e45cf05b9e75ca1e6dde561189a
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cc7201a4a058293ac9ea40662a5f1454cbe009de738be20c57116fa70d1a6de
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (274 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -54.88026021300193, "std_reward": 26.184831412095978, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T20:59:06.083810"}