Update README.md
Browse files
README.md
CHANGED
@@ -1,30 +1,27 @@
|
|
1 |
---
|
2 |
-
datasets:
|
3 |
-
- Cnam-LMSSC/vibravox
|
4 |
language: fr
|
5 |
-
library_name: transformers
|
6 |
license: mit
|
|
|
7 |
tags:
|
8 |
-
- audio
|
9 |
-
- audio-to-audio
|
10 |
-
- speech
|
|
|
|
|
11 |
model-index:
|
12 |
-
- name: EBEN(M
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
- type: n-mos
|
26 |
-
value: ???
|
27 |
-
name: Test Noresqa-MOS, in-domain training
|
28 |
---
|
29 |
|
30 |
<p align="center">
|
@@ -34,7 +31,7 @@ model-index:
|
|
34 |
# Model Card
|
35 |
|
36 |
- **Developed by:** [Cnam-LMSSC](https://huggingface.co/Cnam-LMSSC)
|
37 |
-
- **Model:** [EBEN(M
|
38 |
- **Language:** French
|
39 |
- **License:** MIT
|
40 |
- **Training dataset:** `speech_clean` subset of [Cnam-LMSSC/vibravox](https://huggingface.co/datasets/Cnam-LMSSC/vibravox)
|
@@ -42,18 +39,7 @@ model-index:
|
|
42 |
|
43 |
## Overview
|
44 |
|
45 |
-
This
|
46 |
-
|
47 |
-
## Disclaimer
|
48 |
-
This model, trained for **a specific non-conventional speech sensor**, is intended to be used with **in-domain data**. Using it with other sensor data may lead to suboptimal performance.
|
49 |
-
|
50 |
-
## Link to BWE models trained on other body conducted sensors :
|
51 |
-
|
52 |
-
The entry point to all EBEN models for Bandwidth Extension (BWE) is available at [https://huggingface.co/Cnam-LMSSC/vibravox_EBEN_models](https://huggingface.co/Cnam-LMSSC/vibravox_EBEN_models).
|
53 |
-
|
54 |
-
## Training procedure
|
55 |
-
|
56 |
-
Detailed instructions for reproducing the experiments are available on the [jhauret/vibravox](https://github.com/jhauret/vibravox) Github repository.
|
57 |
|
58 |
## Inference script :
|
59 |
|
@@ -62,12 +48,12 @@ import torch, torchaudio
|
|
62 |
from vibravox.torch_modules.dnn.eben_generator import EBENGenerator
|
63 |
from datasets import load_dataset
|
64 |
|
65 |
-
model = EBENGenerator.from_pretrained("Cnam-LMSSC/
|
66 |
test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_clean", split="test", streaming=True)
|
67 |
|
68 |
-
audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.
|
69 |
audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000)
|
70 |
|
71 |
cut_audio_16kHz = model.cut_to_valid_length(audio_16kHz[None, None, :])
|
72 |
-
|
73 |
```
|
|
|
1 |
---
|
|
|
|
|
2 |
language: fr
|
|
|
3 |
license: mit
|
4 |
+
library_name: transformers
|
5 |
tags:
|
6 |
+
- audio
|
7 |
+
- audio-to-audio
|
8 |
+
- speech
|
9 |
+
datasets:
|
10 |
+
- Cnam-LMSSC/vibravox
|
11 |
model-index:
|
12 |
+
- name: EBEN(M=4,P=4,Q=4)
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Bandwidth Extension
|
16 |
+
type: speech-enhancement
|
17 |
+
dataset:
|
18 |
+
name: Vibravox["headset_microphone"] to Vibravox["rigid_in_ear_microphone"]
|
19 |
+
type: Cnam-LMSSC/vibravox
|
20 |
+
args: fr
|
21 |
+
metrics:
|
22 |
+
- name: Test STOI, in-domain training
|
23 |
+
type: stoi
|
24 |
+
value: 0.7686
|
|
|
|
|
|
|
25 |
---
|
26 |
|
27 |
<p align="center">
|
|
|
31 |
# Model Card
|
32 |
|
33 |
- **Developed by:** [Cnam-LMSSC](https://huggingface.co/Cnam-LMSSC)
|
34 |
+
- **Model:** [EBEN(M=4,P=4,Q=4)](https://github.com/jhauret/vibravox/blob/main/vibravox/torch_modules/dnn/eben_generator.py) (see [publication in IEEE TASLP](https://ieeexplore.ieee.org/document/10244161) - [arXiv link](https://arxiv.org/abs/2303.10008))
|
35 |
- **Language:** French
|
36 |
- **License:** MIT
|
37 |
- **Training dataset:** `speech_clean` subset of [Cnam-LMSSC/vibravox](https://huggingface.co/datasets/Cnam-LMSSC/vibravox)
|
|
|
39 |
|
40 |
## Overview
|
41 |
|
42 |
+
This model, trained on [Vibravox](https://huggingface.co/datasets/Cnam-LMSSC/vibravox) body conduction sensor data, maps clean speech to body-conducted speech.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
## Inference script :
|
45 |
|
|
|
48 |
from vibravox.torch_modules.dnn.eben_generator import EBENGenerator
|
49 |
from datasets import load_dataset
|
50 |
|
51 |
+
model = EBENGenerator.from_pretrained("Cnam-LMSSC/EBEN_reverse_rigid_in_ear_microphone")
|
52 |
test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_clean", split="test", streaming=True)
|
53 |
|
54 |
+
audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.headset_microphone"]["array"])
|
55 |
audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000)
|
56 |
|
57 |
cut_audio_16kHz = model.cut_to_valid_length(audio_16kHz[None, None, :])
|
58 |
+
degraded_audio_16kHz, _ = model(cut_audio_16kHz)
|
59 |
```
|