SentenceTransformer based on answerdotai/ModernBERT-base
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base on the korean_nli_dataset dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': True, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("x2bee/sts_nli_tune_test")
# Run inference
sentences = [
'버스가 바쁜 길을 따라 운전한다.',
'녹색 버스가 도로를 따라 내려간다.',
'그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts_dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8273 |
spearman_cosine | 0.8298 |
pearson_euclidean | 0.8112 |
spearman_euclidean | 0.8214 |
pearson_manhattan | 0.8125 |
spearman_manhattan | 0.8226 |
pearson_dot | 0.7648 |
spearman_dot | 0.7648 |
pearson_max | 0.8273 |
spearman_max | 0.8298 |
Training Details
Training Dataset
korean_nli_dataset
- Dataset: korean_nli_dataset at ef305ef
- Size: 392,702 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 35.7 tokens
- max: 194 tokens
- min: 4 tokens
- mean: 19.92 tokens
- max: 64 tokens
- min: 0.0
- mean: 0.48
- max: 1.0
- Samples:
sentence1 sentence2 score 개념적으로 크림 스키밍은 제품과 지리라는 두 가지 기본 차원을 가지고 있다.
제품과 지리학은 크림 스키밍을 작동시키는 것이다.
0.5
시즌 중에 알고 있는 거 알아? 네 레벨에서 다음 레벨로 잃어버리는 거야 브레이브스가 모팀을 떠올리기로 결정하면 브레이브스가 트리플 A에서 한 남자를 떠올리기로 결정하면 더블 A가 그를 대신하러 올라가고 A 한 명이 그를 대신하러 올라간다.
사람들이 기억하면 다음 수준으로 물건을 잃는다.
1.0
우리 번호 중 하나가 당신의 지시를 세밀하게 수행할 것이다.
우리 팀의 일원이 당신의 명령을 엄청나게 정확하게 실행할 것이다.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
sts_dev
- Dataset: sts_dev at 1de0cdf
- Size: 1,500 evaluation samples
- Columns:
text
,pair
, andlabel
- Approximate statistics based on the first 1000 samples:
text pair label type string string float details - min: 7 tokens
- mean: 20.38 tokens
- max: 52 tokens
- min: 6 tokens
- mean: 20.52 tokens
- max: 54 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
text pair label 안전모를 가진 한 남자가 춤을 추고 있다.
안전모를 쓴 한 남자가 춤을 추고 있다.
1.0
어린아이가 말을 타고 있다.
아이가 말을 타고 있다.
0.95
한 남자가 뱀에게 쥐를 먹이고 있다.
남자가 뱀에게 쥐를 먹이고 있다.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for x2bee/ModernBERT-SimCSE_v02
Evaluation results
- Pearson Cosine on sts devself-reported0.827
- Spearman Cosine on sts devself-reported0.830
- Pearson Euclidean on sts devself-reported0.811
- Spearman Euclidean on sts devself-reported0.821
- Pearson Manhattan on sts devself-reported0.813
- Spearman Manhattan on sts devself-reported0.823
- Pearson Dot on sts devself-reported0.765
- Spearman Dot on sts devself-reported0.765
- Pearson Max on sts devself-reported0.827
- Spearman Max on sts devself-reported0.830