File size: 1,630 Bytes
33b98c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language:
- en
license: apache-2.0
tags:
- t5-small
- text2text-generation
- natural language generation
- conversational system
- task-oriented dialog
datasets:
- ConvLab/multiwoz21
metrics:
- Slot Error Rate
- sacrebleu
model-index:
- name: t5-small-nlg-all-multiwoz21
results:
- task:
type: text2text-generation
name: natural language generation
dataset:
type: ConvLab/multiwoz21
name: MultiWOZ 2.1
split: test
revision: 5f55375edbfe0270c20bcf770751ad982c0e6614
metrics:
- type: Slot Error Rate
value: 5.4
name: SER
- type: sacrebleu
value: 29.7
name: BLEU
widget:
- text: "[inform][taxi]([destination][Pizza Hut Fen Ditton],[departure][Saint John's college])\n\nuser: "
- text: "[request][taxi]([leave at][],[arrive by][])\n\nsystem: "
inference:
parameters:
max_length: 100
---
# t5-small-nlg-all-multiwoz21
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) both user and system utterances.
Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 10.0
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1
|