CoreyMorris commited on
Commit
65b4f03
·
1 Parent(s): 518939d

experiment 2 with rl zoo

Browse files
.gitattributes CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
33
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -8,29 +8,68 @@ tags:
8
  model-index:
9
  - name: PPO
10
  results:
11
- - metrics:
12
- - type: mean_reward
13
- value: 175.65 +/- 69.08
14
- name: mean_reward
15
- task:
16
  type: reinforcement-learning
17
  name: reinforcement-learning
18
  dataset:
19
  name: LunarLander-v2
20
  type: LunarLander-v2
 
 
 
 
 
21
  ---
22
 
23
  # **PPO** Agent playing **LunarLander-v2**
24
  This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
- using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
 
26
 
27
- ## Usage (with Stable-baselines3)
28
- TODO: Add your code
 
29
 
 
30
 
31
- ```python
32
- from stable_baselines3 import ...
33
- from huggingface_sb3 import load_from_hub
34
 
35
- ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ```
 
8
  model-index:
9
  - name: PPO
10
  results:
11
+ - task:
 
 
 
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
  name: LunarLander-v2
16
  type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.87 +/- 21.10
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
 
24
  # **PPO** Agent playing **LunarLander-v2**
25
  This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
 
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
 
33
+ ## Usage (with SB3 RL Zoo)
34
 
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
 
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env LunarLander-v2 -orga CoreyMorris -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env LunarLander-v2 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env LunarLander-v2 -orga CoreyMorris -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env LunarLander-v2 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env LunarLander-v2 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env LunarLander-v2 -f logs/ -orga CoreyMorris
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 64),
66
+ ('ent_coef', 0.01),
67
+ ('gae_lambda', 0.98),
68
+ ('gamma', 0.999),
69
+ ('n_envs', 16),
70
+ ('n_epochs', 4),
71
+ ('n_steps', 1024),
72
+ ('n_timesteps', 1000000.0),
73
+ ('policy', 'MlpPolicy'),
74
+ ('normalize', False)])
75
  ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - LunarLander-v2
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 10
14
+ - - eval_freq
15
+ - 10000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - 10000
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2587859772
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/LunarLander-v2__ppo__2587859772__1674536198
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - logs/ppo/LunarLander-v2_1/rl_model_990000_steps.zip
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - lander
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - ent_coef
5
+ - 0.01
6
+ - - gae_lambda
7
+ - 0.98
8
+ - - gamma
9
+ - 0.999
10
+ - - n_envs
11
+ - 16
12
+ - - n_epochs
13
+ - 4
14
+ - - n_steps
15
+ - 1024
16
+ - - n_timesteps
17
+ - 1000000.0
18
+ - - policy
19
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6833ae16701effac68aa0e4356ce19f36a5e7c89d4584c5e30ea9746bd1a816e
3
- size 147128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71c23f28c774b4c1ea048a23e6f96de139eabab057c2fd6f95cb6803823942bd
3
+ size 150362
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.0
 
1
+ 1.7.0
ppo-LunarLander-v2/data CHANGED
@@ -3,20 +3,21 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7efca12a3d40>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efca12a3dd0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efca12a3e60>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efca12a3ef0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7efca12a3f80>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7efca12aa050>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efca12aa0e0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7efca12aa170>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efca12aa200>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efca12aa290>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efca12aa320>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7efca12f95a0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -35,29 +36,26 @@
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
  "n": 4,
40
  "_shape": [],
41
  "dtype": "int64",
42
- "_np_random": null
43
  },
44
- "n_envs": 16,
45
- "num_timesteps": 507904,
46
- "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
- "seed": null,
49
  "action_noise": null,
50
- "start_time": 1662401121.3373034,
51
  "learning_rate": 0.0003,
52
- "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
- },
57
- "_last_obs": {
58
- ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMPjj3WxAA/aMsOvlI+hL5HHja9VkZbvgAAAAAAAAAALUsSvsiPgTt/IjW7gqGXOOPQK70w/l06AACAPwAAgD8N8S2+4RDpukLfeTrSECg33hYwPPfAk7kAAIA/AACAP1oO/b20vOU+UZDKPQ4aAL5awJu9o54QPgAAAAAAAAAAZd+GvsNrRzvWaN87+bHPPBd0J71jKrM9AACAPwAAgD8ixJ++On9yPyqqr74Dnb2+5+ayvunSP70AAAAAAAAAAADupjwK7oA/P/+FvQpLs762Ls89KohBvgAAAAAAAAAAIHdrvsUVkDz7m3m7O253ORbHGb4bZ3q6AACAPwAAgD8AGpa8fESTP7OLwL0j5LW+eAIJPoFYvz0AAAAAAAAAAA0UCz6Fld06LTXxupZAdzvSXJs8Q8RxPAAAgD8AAIA/hhMTvgfNsj58LLO8EcegvjPojr3Ukgi+AAAAAAAAAAAz1t48OPA4P5fTob33gnS+N6tPPZtbBjwAAAAAAAAAADObuDy8NqY/IgNvPsUt9r7s8Aq8UPhmOQAAAAAAAAAA5jowvUgfpLpLhak6ZNoavWCsVrrRoAe+AAAAAAAAgD9aA9i9rm2UumvMiDtwN/A2r5pcOwqZnroAAIA/AACAP7PLJz2ET64/oHUWP8Kqpr7wl+C8W8OnuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
 
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
  ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
@@ -69,13 +67,13 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVbRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlPsdigKkW0CUhpRSlIwBbJRN6AOMAXSUR0B6Bd7v5P/JdX2UKGgGaAloD0MIp1t2iP/HasCUhpRSlGgVS7loFkdAegiuUUwi7nV9lChoBmgJaA9DCK2E7pI4m1VAlIaUUpRoFU3oA2gWR0B6KxcyFfzCdX2UKGgGaAloD0MITu53KArwRECUhpRSlGgVS6JoFkdAejIlb/wRXnV9lChoBmgJaA9DCBdFD3wMvipAlIaUUpRoFUvpaBZHQHpKO0G/vfF1fZQoaAZoCWgPQwhl4etrXQhWwJSGlFKUaBVN5AFoFkdAelAQQL/jsHV9lChoBmgJaA9DCHJvfsNEFFhAlIaUUpRoFU3oA2gWR0B6U7gJkXk6dX2UKGgGaAloD0MIHhhA+FAzW0CUhpRSlGgVTegDaBZHQHqEtmYjSoh1fZQoaAZoCWgPQwjtf4C16gRiQJSGlFKUaBVN6ANoFkdAeoX+r2g3+HV9lChoBmgJaA9DCBYVcTrJ81tAlIaUUpRoFU3oA2gWR0B6h7jo6jnFdX2UKGgGaAloD0MIpb3BFyaDQECUhpRSlGgVTegDaBZHQHqhkMG5c1R1fZQoaAZoCWgPQwjCvTJv1VtHQJSGlFKUaBVN6ANoFkdAeqVKVpsXSHV9lChoBmgJaA9DCFABMJ5BIV5AlIaUUpRoFU3oA2gWR0B6qVsuWa+fdX2UKGgGaAloD0MImwKZnUW0WkCUhpRSlGgVTegDaBZHQHqytI9TxXp1fZQoaAZoCWgPQwiYTus2qDNeQJSGlFKUaBVN6ANoFkdAer0MFlkH2XV9lChoBmgJaA9DCIYcW88Q7FtAlIaUUpRoFU3oA2gWR0B6y3VkMCtBdX2UKGgGaAloD0MI21Axzt+kAUCUhpRSlGgVS+loFkdAetegccU/OnV9lChoBmgJaA9DCF5MM91rG2BAlIaUUpRoFU3oA2gWR0B63Kad+XqrdX2UKGgGaAloD0MIeNUD5iGPM8CUhpRSlGgVS+NoFkdAez1Gpda+vnV9lChoBmgJaA9DCGvvU1Vo519AlIaUUpRoFU3oA2gWR0B7SeOhkAggdX2UKGgGaAloD0MIf/lkxXDlN8CUhpRSlGgVS9xoFkdAe1+IZIg/1XV9lChoBmgJaA9DCEYkCi3r6VhAlIaUUpRoFU3oA2gWR0B7eqaTfR/mdX2UKGgGaAloD0MI3H75ZMVkWUCUhpRSlGgVTegDaBZHQHuBfi97F851fZQoaAZoCWgPQwg57pQO1mFdQJSGlFKUaBVN6ANoFkdAe5eBGQSzxHV9lChoBmgJaA9DCGR1q+ekW0NAlIaUUpRoFU3oA2gWR0B7nMuWa+ewdX2UKGgGaAloD0MIoIzxYfZCTUCUhpRSlGgVTegDaBZHQHugIwRGtp51fZQoaAZoCWgPQwi0Oc5twv0gQJSGlFKUaBVL+mgWR0B7ossK9f1IdX2UKGgGaAloD0MI8bvplh17W0CUhpRSlGgVTegDaBZHQHvPfCAMDwJ1fZQoaAZoCWgPQwjMlxdgHwRfQJSGlFKUaBVN6ANoFkdAe9DIFeOXFHV9lChoBmgJaA9DCN4crtUe0VdAlIaUUpRoFU3oA2gWR0B70mcMEzO5dX2UKGgGaAloD0MIgoyACkdoOUCUhpRSlGgVS/doFkdAe+Tf3vhIfHV9lChoBmgJaA9DCC/APjp1111AlIaUUpRoFU3oA2gWR0B78W1UlzEKdX2UKGgGaAloD0MIroGtEixaVkCUhpRSlGgVTegDaBZHQHv15zgdfb91fZQoaAZoCWgPQwj0F3rE6MddQJSGlFKUaBVN6ANoFkdAe//925hBq3V9lChoBmgJaA9DCOcAwRw9vgFAlIaUUpRoFUvEaBZHQHwGDjin5zp1fZQoaAZoCWgPQwhXXByVm0gEwJSGlFKUaBVNAAFoFkdAfBUoXsPatnV9lChoBmgJaA9DCCcVjbW/WzZAlIaUUpRoFU3oA2gWR0B8HemgrYoRdX2UKGgGaAloD0MIBOYhUz64OcCUhpRSlGgVS9ZoFkdAfCt+IdlunHV9lChoBmgJaA9DCGNGeHuQoGRAlIaUUpRoFU3oA2gWR0B8LMD2alUIdX2UKGgGaAloD0MIETl9PV+aWUCUhpRSlGgVTegDaBZHQHyXSvHLidd1fZQoaAZoCWgPQwhB8Pj2rmESQJSGlFKUaBVLz2gWR0B8m44KhL5AdX2UKGgGaAloD0MIW7BUF/BzYUCUhpRSlGgVTegDaBZHQHymGqcVgx91fZQoaAZoCWgPQwgIW+z2WZE0wJSGlFKUaBVNFwFoFkdAfMmXr+o993V9lChoBmgJaA9DCMsw7gbRX11AlIaUUpRoFU3oA2gWR0B83vFId2gWdX2UKGgGaAloD0MIHXdKB+tNTcCUhpRSlGgVS8FoFkdAfOHQ8OkLyHV9lChoBmgJaA9DCH45s12hBV9AlIaUUpRoFU3oA2gWR0B85kxIre67dX2UKGgGaAloD0MIRIfAkUBSUUCUhpRSlGgVTegDaBZHQHz9I55qubJ1fZQoaAZoCWgPQwjSNv5EZQNgQJSGlFKUaBVN6ANoFkdAfQRRu0kWynV9lChoBmgJaA9DCI/FNqloXVBAlIaUUpRoFU3oA2gWR0B9CIrmQr+YdX2UKGgGaAloD0MIRrJHqBkqJ8CUhpRSlGgVS/BoFkdAfRNE+gUUPHV9lChoBmgJaA9DCFbT9UTXKFlAlIaUUpRoFU3oA2gWR0B9O5rM1TBJdX2UKGgGaAloD0MI6Qsh5/3vHECUhpRSlGgVTegDaBZHQH1PKur6tT11fZQoaAZoCWgPQwgkYd9OIvFTQJSGlFKUaBVN6ANoFkdAfV8vtMPBi3V9lChoBmgJaA9DCDp2UInrRl5AlIaUUpRoFU3oA2gWR0B9aTifg75mdX2UKGgGaAloD0MIMc7fhEKeUUCUhpRSlGgVTegDaBZHQH1vaESM98t1fZQoaAZoCWgPQwhnnIaowvhcQJSGlFKUaBVN6ANoFkdAfYZT8YQ8OnV9lChoBmgJaA9DCBXGFoIc2EzAlIaUUpRoFU3bAWgWR0B9iMT+NtIkdX2UKGgGaAloD0MIDag3o+Z/PsCUhpRSlGgVS/doFkdAfZChZQpF1HV9lChoBmgJaA9DCNBGrptSL1lAlIaUUpRoFU3oA2gWR0B9lIRmK64EdX2UKGgGaAloD0MIvXFSmPfAO0CUhpRSlGgVS/hoFkdAfbDglWwNb3V9lChoBmgJaA9DCHwrEhPUr19AlIaUUpRoFU3oA2gWR0B9sQlt0mtydX2UKGgGaAloD0MI/wdYq/ZbYUCUhpRSlGgVTegDaBZHQH4CXJtBOYZ1fZQoaAZoCWgPQwhjDoKOVnUTQJSGlFKUaBVLz2gWR0B+ChAfMfRvdX2UKGgGaAloD0MIT+YffZM2XUCUhpRSlGgVTegDaBZHQH49BBJI1+B1fZQoaAZoCWgPQwihEAGHUDZbQJSGlFKUaBVN6ANoFkdAfj+xqfvnbXV9lChoBmgJaA9DCOF5qdiYmVhAlIaUUpRoFU3oA2gWR0B+Q7cKw6hhdX2UKGgGaAloD0MIZJY9CWwDWUCUhpRSlGgVTegDaBZHQH5ZkGRmseZ1fZQoaAZoCWgPQwgf2Vw1z25UQJSGlFKUaBVN6ANoFkdAfl7Cm/FirnV9lChoBmgJaA9DCCaqtwa2D1hAlIaUUpRoFU3oA2gWR0B+azKp1ie/dX2UKGgGaAloD0MIY7SOqiYQS0CUhpRSlGgVS6NoFkdAfm67zCk43nV9lChoBmgJaA9DCKyt2F92D09AlIaUUpRoFU3oA2gWR0B+k+VpsXSCdX2UKGgGaAloD0MI3WCowwpvIUCUhpRSlGgVS+toFkdAfpeeaa1CxHV9lChoBmgJaA9DCEHxY8xdwlpAlIaUUpRoFU3oA2gWR0B+uChAWznidX2UKGgGaAloD0MIh6jCn+E6VECUhpRSlGgVTegDaBZHQH7DM2aUiY91fZQoaAZoCWgPQwh/Ep87wWpRQJSGlFKUaBVN6ANoFkdAfuX5u63AmHV9lChoBmgJaA9DCAxZ3eo5fT9AlIaUUpRoFU0XAWgWR0B+5+6xxDLKdX2UKGgGaAloD0MIZ2K6EKvNX0CUhpRSlGgVTegDaBZHQH7vJa3Zwn91fZQoaAZoCWgPQwhHxmrz/zxdQJSGlFKUaBVN6ANoFkdAfvMaV2Rq5HV9lChoBmgJaA9DCBuDTggd9DDAlIaUUpRoFUvqaBZHQH77Sih37k51fZQoaAZoCWgPQwg9RQ4RN5FYQJSGlFKUaBVN6ANoFkdAfw+GGmDUVnV9lChoBmgJaA9DCCR7hJohvldAlIaUUpRoFU3oA2gWR0B/D6jKxLTQdX2UKGgGaAloD0MIUYaqmErJXECUhpRSlGgVTegDaBZHQH8TGOMl1KZ1fZQoaAZoCWgPQwgjwOldvE8bwJSGlFKUaBVLvGgWR0B/ZOQV9F4LdX2UKGgGaAloD0MIcTs0LEZMUECUhpRSlGgVTegDaBZHQH9lm+XZ5A11fZQoaAZoCWgPQwjtnjws1CZQQJSGlFKUaBVN6ANoFkdAf5Sns9jgAXV9lChoBmgJaA9DCHlcVIuI4ERAlIaUUpRoFU3oA2gWR0B/lyg13t8edX2UKGgGaAloD0MIPBQF+kSIXECUhpRSlGgVTegDaBZHQH+155eJHiF1fZQoaAZoCWgPQwi22O2zyj1iQJSGlFKUaBVN6ANoFkdAf8MDTSb6QHV9lChoBmgJaA9DCJs90AqM6mFAlIaUUpRoFU3oA2gWR0B/xrQWvbGndX2UKGgGaAloD0MIXd4crtVGWECUhpRSlGgVTegDaBZHQH/syGJvYOF1fZQoaAZoCWgPQwh1yThGMoNjQJSGlFKUaBVN6ANoFkdAgA40rTYukHV9lChoBmgJaA9DCBqiCn+GR1dAlIaUUpRoFU3oA2gWR0CAIYKv3ai9dX2UKGgGaAloD0MInBcnvlqlYECUhpRSlGgVTegDaBZHQIAmbI5o4+91fZQoaAZoCWgPQwjHSWHe44pRQJSGlFKUaBVN6ANoFkdAgCilzEJjUnV9lChoBmgJaA9DCMvVj01yt2FAlIaUUpRoFU3oA2gWR0CALT48EFGHdX2UKGgGaAloD0MICVG+oIXaWkCUhpRSlGgVTegDaBZHQIA3vHaN+9d1fZQoaAZoCWgPQwhp/MIrSepEQJSGlFKUaBVN6ANoFkdAgDfQbEP1+XV9lChoBmgJaA9DCF+Zt+o6T1FAlIaUUpRoFU3oA2gWR0CAOZ3eN1hcdX2UKGgGaAloD0MImrZ/ZaUPXECUhpRSlGgVTegDaBZHQIA87D0lJH11fZQoaAZoCWgPQwidZoF2hy9bQJSGlFKUaBVN6ANoFkdAgD1E2pAD73VlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 124,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,7 +84,7 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbd0bd80940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbd0bd809d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbd0bd80a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbd0bd80af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbd0bd80b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbd0bd80c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbd0bd80ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbd0bd80d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbd0bd80dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbd0bd80e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbd0bd80ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbd0bd80f70>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fbd0bd7c6c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
36
  },
37
  "action_space": {
38
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
40
  "n": 4,
41
  "_shape": [],
42
  "dtype": "int64",
43
+ "_np_random": "RandomState(MT19937)"
44
  },
45
+ "n_envs": 1,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
  "_num_timesteps_at_start": 0,
49
+ "seed": 0,
50
  "action_noise": null,
51
+ "start_time": 1674536206442318020,
52
  "learning_rate": 0.0003,
53
+ "tensorboard_log": "runs/LunarLander-v2__ppo__2587859772__1674536198/LunarLander-v2",
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
 
 
 
57
  },
58
+ "_last_obs": null,
59
  "_last_episode_starts": {
60
  ":type:": "<class 'numpy.ndarray'>",
61
  ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
 
67
  "_current_progress_remaining": -0.015808000000000044,
68
  "ep_info_buffer": {
69
  ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISriQR3DwbkCUhpRSlIwBbJRL7IwBdJRHQJBSfQu27Wd1fZQoaAZoCWgPQwj+uWjI+NFwQJSGlFKUaBVNAwFoFkdAkFKnbVSXMXV9lChoBmgJaA9DCA0c0NKVyG5AlIaUUpRoFUvyaBZHQJBSsAn2Iwd1fZQoaAZoCWgPQwjG+DB72fpwQJSGlFKUaBVNGAFoFkdAkFLqHj6vaHV9lChoBmgJaA9DCNRDNLoDDW5AlIaUUpRoFUvvaBZHQJBTPQ8fV7R1fZQoaAZoCWgPQwiQn41c9/1yQJSGlFKUaBVLzWgWR0CQU0cW0qpcdX2UKGgGaAloD0MIw4Nm1z12cUCUhpRSlGgVS+JoFkdAkFPGOp84P3V9lChoBmgJaA9DCPpH36RpkW1AlIaUUpRoFU0GAWgWR0CQVIMvRJEqdX2UKGgGaAloD0MISS7/IT3tckCUhpRSlGgVS+loFkdAkFTxLbpNbnV9lChoBmgJaA9DCGItPgWAy3BAlIaUUpRoFUvpaBZHQJBVGO4oZyd1fZQoaAZoCWgPQwi54uKo3OFwQJSGlFKUaBVL5WgWR0CQVVDwpe/pdX2UKGgGaAloD0MIXqCkwAKYckCUhpRSlGgVS/ZoFkdAkFWo/Vy3kXV9lChoBmgJaA9DCKrXLQKj6XJAlIaUUpRoFUviaBZHQJBV4kWykbh1fZQoaAZoCWgPQwjPoncq4HlwQJSGlFKUaBVL2mgWR0CQVezeoDPodX2UKGgGaAloD0MINszQeGJBckCUhpRSlGgVS+5oFkdAkFYtnkDIR3V9lChoBmgJaA9DCB9Hc2Tl5nJAlIaUUpRoFUvuaBZHQJBW/bDdgv11fZQoaAZoCWgPQwj8bU+QGBhxQJSGlFKUaBVL62gWR0CQV1dt2s7udX2UKGgGaAloD0MIHQOy1/sOckCUhpRSlGgVS/JoFkdAkFdXAM2FWXV9lChoBmgJaA9DCPH2IARk/G1AlIaUUpRoFUvkaBZHQJBXdgtvn8t1fZQoaAZoCWgPQwjm54amrPpzQJSGlFKUaBVL0mgWR0CQV368g6ltdX2UKGgGaAloD0MIGTvhJTiGcUCUhpRSlGgVS+1oFkdAkFgGeYlY2nV9lChoBmgJaA9DCLTjht+NGnFAlIaUUpRoFU0MAWgWR0CQWBRNRFZxdX2UKGgGaAloD0MI0y07xP+HcUCUhpRSlGgVTQYBaBZHQJBZD52yLQ51fZQoaAZoCWgPQwgQdopVg6JzQJSGlFKUaBVL5GgWR0CQWZMWXTmXdX2UKGgGaAloD0MIFm2Oc9vbcECUhpRSlGgVS+BoFkdAkFml+d9Uj3V9lChoBmgJaA9DCKyNsROef3BAlIaUUpRoFUv+aBZHQJBZsJ2MbWF1fZQoaAZoCWgPQwgWa7jIvXVzQJSGlFKUaBVL1WgWR0CQWjGff4yodX2UKGgGaAloD0MIpYY2AJtacUCUhpRSlGgVTQcBaBZHQJBapnRLK3d1fZQoaAZoCWgPQwi5xmeyf/ZvQJSGlFKUaBVL+GgWR0CQWrCzTnaGdX2UKGgGaAloD0MIDvYmhmTqb0CUhpRSlGgVS/BoFkdAkFsPqkdmx3V9lChoBmgJaA9DCLTonQr4UnJAlIaUUpRoFU0DAWgWR0CQWzAJLM9sdX2UKGgGaAloD0MIPKJCdTNQcUCUhpRSlGgVS9xoFkdAkHgUJfICEHV9lChoBmgJaA9DCGUbuAP1jHJAlIaUUpRoFU0AAWgWR0CQeGE4//vOdX2UKGgGaAloD0MIB8+EJokwckCUhpRSlGgVS+toFkdAkHh0GiYb83V9lChoBmgJaA9DCEoMAiuHNHBAlIaUUpRoFUv6aBZHQJB4mZa3Zwp1fZQoaAZoCWgPQwhBZfz7zMVxQJSGlFKUaBVNBgFoFkdAkIGr8R+SbHV9lChoBmgJaA9DCGQe+YNBlHBAlIaUUpRoFUvuaBZHQJCB1VYISlF1fZQoaAZoCWgPQwhW8UbmES5xQJSGlFKUaBVL8mgWR0CQgfDOkcjrdX2UKGgGaAloD0MIgv+tZEeZc0CUhpRSlGgVS+RoFkdAkIMYxgy/K3V9lChoBmgJaA9DCCkmb4CZT21AlIaUUpRoFUvmaBZHQJCDQNqgyuZ1fZQoaAZoCWgPQwhAo3TpHxdxQJSGlFKUaBVL7WgWR0CQg1t3fQ8fdX2UKGgGaAloD0MIJGO1+T/uckCUhpRSlGgVTQ0BaBZHQJCDdO1v2oN1fZQoaAZoCWgPQwgkYHR5M2dwQJSGlFKUaBVL42gWR0CQg67oB7u2dX2UKGgGaAloD0MImKWdmsuhckCUhpRSlGgVS95oFkdAkIQJU96kZnV9lChoBmgJaA9DCBanWgvz+3BAlIaUUpRoFUvnaBZHQJCEnYFqzqt1fZQoaAZoCWgPQwgwYp8Ait1xQJSGlFKUaBVL/mgWR0CQhURUFSsKdX2UKGgGaAloD0MI/te5afNkcUCUhpRSlGgVTRYBaBZHQJCFRIjGDL91fZQoaAZoCWgPQwghrMYSlhNyQJSGlFKUaBVL42gWR0CQheaRZEDydX2UKGgGaAloD0MIm1Q01v7KcUCUhpRSlGgVS+hoFkdAkIYrobGWEHV9lChoBmgJaA9DCCjzj76JD3FAlIaUUpRoFU0HAWgWR0CQhlO+qR2bdX2UKGgGaAloD0MI0J1g/7XGcECUhpRSlGgVS+doFkdAkIZqpkwvg3V9lChoBmgJaA9DCOoHdZFCKXJAlIaUUpRoFU0JAWgWR0CQhqWbwz+FdX2UKGgGaAloD0MITx4Wag22cUCUhpRSlGgVS+toFkdAkIaqZ+hGpnV9lChoBmgJaA9DCP5+MVsyqXFAlIaUUpRoFUv/aBZHQJCHI0EX+ER1fZQoaAZoCWgPQwgnSkIiLQVyQJSGlFKUaBVL2WgWR0CQh75Sm65HdX2UKGgGaAloD0MI5ZfBGNEPdECUhpRSlGgVS8VoFkdAkIfOLaVUuXV9lChoBmgJaA9DCF/U7leBDXNAlIaUUpRoFUvmaBZHQJCIH7FbVz91fZQoaAZoCWgPQwiZDwh0Jk1zQJSGlFKUaBVNBwFoFkdAkIiPz8P4EnV9lChoBmgJaA9DCDS8WYN3jXBAlIaUUpRoFUv0aBZHQJCIiHk92X91fZQoaAZoCWgPQwhf7L34ot9xQJSGlFKUaBVL5GgWR0CQiMxcVxjsdX2UKGgGaAloD0MIZ7lsdA7QcUCUhpRSlGgVS+hoFkdAkIlvuw5eaHV9lChoBmgJaA9DCCCWzRwS0HJAlIaUUpRoFUvUaBZHQJCJoGqxTsJ1fZQoaAZoCWgPQwhBR6ta0lRxQJSGlFKUaBVL+mgWR0CQimvQ4S6EdX2UKGgGaAloD0MIq7LviqARckCUhpRSlGgVS+BoFkdAkIp1TaTOgXV9lChoBmgJaA9DCM5twr1yt3NAlIaUUpRoFUvUaBZHQJCK8QAdXDF1fZQoaAZoCWgPQwgRc0nV9uFvQJSGlFKUaBVL7GgWR0CQivPjn3cpdX2UKGgGaAloD0MIc9h9xzC1ckCUhpRSlGgVS+9oFkdAkIs/C2tuDXV9lChoBmgJaA9DCHx716CvYXJAlIaUUpRoFUvsaBZHQJCLbVz6rNp1fZQoaAZoCWgPQwhMpDSbx/1KQJSGlFKUaBVLp2gWR0CQi4qO938odX2UKGgGaAloD0MIXTelvJaKcUCUhpRSlGgVTSYBaBZHQJCMSMYMvyt1fZQoaAZoCWgPQwi/K4L/bQdxQJSGlFKUaBVNDgFoFkdAkIy3nyNGVnV9lChoBmgJaA9DCAqCx7e3B3JAlIaUUpRoFUvyaBZHQJCMxPDYRNB1fZQoaAZoCWgPQwh+NQcIZiJwQJSGlFKUaBVL8mgWR0CQjNPldTo/dX2UKGgGaAloD0MIZylZTkJDcUCUhpRSlGgVS95oFkdAkI0bWI42j3V9lChoBmgJaA9DCFjGhm42YHJAlIaUUpRoFUvfaBZHQJCNY6o2n891fZQoaAZoCWgPQwhpGhTNAxdTQJSGlFKUaBVLmmgWR0CQjaPxhDw6dX2UKGgGaAloD0MILQq7KHqCbkCUhpRSlGgVTQoBaBZHQJCN+3QUpNN1fZQoaAZoCWgPQwhc5QmEnQ1wQJSGlFKUaBVL5WgWR0CQlra11GLDdX2UKGgGaAloD0MIwD+lSpT1SUCUhpRSlGgVS51oFkdAkJcZ66asqHV9lChoBmgJaA9DCBsrMc/KHnJAlIaUUpRoFU0JAWgWR0CQlznied08dX2UKGgGaAloD0MIxSCwcmgIbUCUhpRSlGgVS+RoFkdAkJdluJk5InV9lChoBmgJaA9DCPBuZYmOH3JAlIaUUpRoFUvraBZHQJCX+vdM0xd1fZQoaAZoCWgPQwhnDkktVFByQJSGlFKUaBVNAgFoFkdAkJhtHpbD/HV9lChoBmgJaA9DCO7of7lWt3BAlIaUUpRoFUvuaBZHQJCYfjin5zp1fZQoaAZoCWgPQwhwIvq1tVpyQJSGlFKUaBVNEgFoFkdAkJkAs5GSZHV9lChoBmgJaA9DCPLpsS1DvHFAlIaUUpRoFUvwaBZHQJCZznkkrwx1fZQoaAZoCWgPQwhV+glndwlwQJSGlFKUaBVL8WgWR0CQmeUKzAvddX2UKGgGaAloD0MI0XZM3VVwcUCUhpRSlGgVS+ZoFkdAkJn4ppeu3nV9lChoBmgJaA9DCFDkSdK1gnNAlIaUUpRoFU0BAWgWR0CQmiSKm8/VdX2UKGgGaAloD0MIVDiCVIr4bUCUhpRSlGgVTR0BaBZHQJCaVDG96C11fZQoaAZoCWgPQwjfisQENXduQJSGlFKUaBVL32gWR0CQmmFLnLaFdX2UKGgGaAloD0MIyXN9H45tcECUhpRSlGgVS/BoFkdAkJsGUOd5IHV9lChoBmgJaA9DCIHR5c2hS3FAlIaUUpRoFUv0aBZHQJCbb/YJ3Pl1fZQoaAZoCWgPQwiiJ2VSw7NyQJSGlFKUaBVNKQFoFkdAkJuK3d9DyHV9lChoBmgJaA9DCK+w4H5Ao29AlIaUUpRoFUvoaBZHQJCbuoS+QEJ1fZQoaAZoCWgPQwhfs1w2OrNxQJSGlFKUaBVL+mgWR0CQm/QXyiEhdX2UKGgGaAloD0MIj1GeeXnHcECUhpRSlGgVTQIBaBZHQJCcaXzDn/11fZQoaAZoCWgPQwhINIEiVn9xQJSGlFKUaBVL8WgWR0CQnLbjtG/fdX2UKGgGaAloD0MIkiIyrGLbcECUhpRSlGgVS+toFkdAkJ0diH6/I3V9lChoBmgJaA9DCPncCfbfAXBAlIaUUpRoFUvvaBZHQJCdIb961LJ1ZS4="
71
  },
72
  "ep_success_buffer": {
73
  ":type:": "<class 'collections.deque'>",
74
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
75
  },
76
+ "_n_updates": 488,
77
  "n_steps": 1024,
78
  "gamma": 0.999,
79
  "gae_lambda": 0.98,
 
84
  "n_epochs": 4,
85
  "clip_range": {
86
  ":type:": "<class 'function'>",
87
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
88
  },
89
  "clip_range_vf": null,
90
  "normalize_advantage": true,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:615482bf1d18fb9def712ca5417a93e97c47353b6f34f56290b50310c85c4e3b
3
- size 87865
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:206c1a8e05b2d4c3b27f04b11e76a4ce6cf68c3bca6cbcf57f717ba7a40b41eb
3
+ size 88057
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2a5af2d7d72516c7e8e9cfee5da5a430645386b082392803c281c94163dc7435
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a640bcc82ec6b418276179fb19af01d9c3e41d7ec1c4fe2a8d350826541be9fc
3
+ size 43393
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
- Python: 3.7.13
3
- Stable-Baselines3: 1.6.0
4
- PyTorch: 1.12.1+cu113
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
1
+ - OS: Linux-5.4.0-137-generic-x86_64-with-glibc2.17 # 154-Ubuntu SMP Thu Jan 5 17:03:22 UTC 2023
2
+ - Python: 3.8.15
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 175.6504080777763, "std_reward": 69.08280280503445, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-05T18:41:50.320343"}
 
1
+ {"mean_reward": 267.8749631, "std_reward": 21.100035115092965, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T01:06:43.544303"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0e83039644a6f6388468c54e7960f1468459c6ad482d6972b3c6767859dc33a
3
+ size 107166