Commit
·
65b4f03
1
Parent(s):
518939d
experiment 2 with rl zoo
Browse files- .gitattributes +1 -0
- README.md +51 -12
- args.yml +83 -0
- config.yml +19 -0
- env_kwargs.yml +1 -0
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/_stable_baselines3_version +1 -1
- ppo-LunarLander-v2/data +27 -29
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +7 -7
- replay.mp4 +0 -0
- results.json +1 -1
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -8,29 +8,68 @@ tags:
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
11 |
-
-
|
12 |
-
- type: mean_reward
|
13 |
-
value: 175.65 +/- 69.08
|
14 |
-
name: mean_reward
|
15 |
-
task:
|
16 |
type: reinforcement-learning
|
17 |
name: reinforcement-learning
|
18 |
dataset:
|
19 |
name: LunarLander-v2
|
20 |
type: LunarLander-v2
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
# **PPO** Agent playing **LunarLander-v2**
|
24 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
-
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
|
|
26 |
|
27 |
-
|
28 |
-
|
|
|
29 |
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
```
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
11 |
+
- task:
|
|
|
|
|
|
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
name: LunarLander-v2
|
16 |
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.87 +/- 21.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
|
24 |
# **PPO** Agent playing **LunarLander-v2**
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env LunarLander-v2 -orga CoreyMorris -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env LunarLander-v2 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env LunarLander-v2 -orga CoreyMorris -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env LunarLander-v2 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env LunarLander-v2 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env LunarLander-v2 -f logs/ -orga CoreyMorris
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 64),
|
66 |
+
('ent_coef', 0.01),
|
67 |
+
('gae_lambda', 0.98),
|
68 |
+
('gamma', 0.999),
|
69 |
+
('n_envs', 16),
|
70 |
+
('n_epochs', 4),
|
71 |
+
('n_steps', 1024),
|
72 |
+
('n_timesteps', 1000000.0),
|
73 |
+
('policy', 'MlpPolicy'),
|
74 |
+
('normalize', False)])
|
75 |
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- LunarLander-v2
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 10
|
14 |
+
- - eval_freq
|
15 |
+
- 10000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- 10000
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 2587859772
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/LunarLander-v2__ppo__2587859772__1674536198
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- logs/ppo/LunarLander-v2_1/rl_model_990000_steps.zip
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- lander
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - ent_coef
|
5 |
+
- 0.01
|
6 |
+
- - gae_lambda
|
7 |
+
- 0.98
|
8 |
+
- - gamma
|
9 |
+
- 0.999
|
10 |
+
- - n_envs
|
11 |
+
- 16
|
12 |
+
- - n_epochs
|
13 |
+
- 4
|
14 |
+
- - n_steps
|
15 |
+
- 1024
|
16 |
+
- - n_timesteps
|
17 |
+
- 1000000.0
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71c23f28c774b4c1ea048a23e6f96de139eabab057c2fd6f95cb6803823942bd
|
3 |
+
size 150362
|
ppo-LunarLander-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
CHANGED
@@ -3,20 +3,21 @@
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
|
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -35,29 +36,26 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
-
"_np_random":
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
-
"seed":
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
-
"tensorboard_log":
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "
|
56 |
-
},
|
57 |
-
"_last_obs": {
|
58 |
-
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMPjj3WxAA/aMsOvlI+hL5HHja9VkZbvgAAAAAAAAAALUsSvsiPgTt/IjW7gqGXOOPQK70w/l06AACAPwAAgD8N8S2+4RDpukLfeTrSECg33hYwPPfAk7kAAIA/AACAP1oO/b20vOU+UZDKPQ4aAL5awJu9o54QPgAAAAAAAAAAZd+GvsNrRzvWaN87+bHPPBd0J71jKrM9AACAPwAAgD8ixJ++On9yPyqqr74Dnb2+5+ayvunSP70AAAAAAAAAAADupjwK7oA/P/+FvQpLs762Ls89KohBvgAAAAAAAAAAIHdrvsUVkDz7m3m7O253ORbHGb4bZ3q6AACAPwAAgD8AGpa8fESTP7OLwL0j5LW+eAIJPoFYvz0AAAAAAAAAAA0UCz6Fld06LTXxupZAdzvSXJs8Q8RxPAAAgD8AAIA/hhMTvgfNsj58LLO8EcegvjPojr3Ukgi+AAAAAAAAAAAz1t48OPA4P5fTob33gnS+N6tPPZtbBjwAAAAAAAAAADObuDy8NqY/IgNvPsUt9r7s8Aq8UPhmOQAAAAAAAAAA5jowvUgfpLpLhak6ZNoavWCsVrrRoAe+AAAAAAAAgD9aA9i9rm2UumvMiDtwN/A2r5pcOwqZnroAAIA/AACAP7PLJz2ET64/oHUWP8Kqpr7wl+C8W8OnuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
|
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
@@ -69,13 +67,13 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
@@ -86,7 +84,7 @@
|
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbd0bd80940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbd0bd809d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbd0bd80a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbd0bd80af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbd0bd80b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbd0bd80c10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbd0bd80ca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbd0bd80d30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbd0bd80dc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbd0bd80e50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbd0bd80ee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbd0bd80f70>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fbd0bd7c6c0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
36 |
},
|
37 |
"action_space": {
|
38 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
40 |
"n": 4,
|
41 |
"_shape": [],
|
42 |
"dtype": "int64",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": 0,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1674536206442318020,
|
52 |
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": "runs/LunarLander-v2__ppo__2587859772__1674536198/LunarLander-v2",
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
|
|
|
|
|
|
57 |
},
|
58 |
+
"_last_obs": null,
|
59 |
"_last_episode_starts": {
|
60 |
":type:": "<class 'numpy.ndarray'>",
|
61 |
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
|
|
67 |
"_current_progress_remaining": -0.015808000000000044,
|
68 |
"ep_info_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISriQR3DwbkCUhpRSlIwBbJRL7IwBdJRHQJBSfQu27Wd1fZQoaAZoCWgPQwj+uWjI+NFwQJSGlFKUaBVNAwFoFkdAkFKnbVSXMXV9lChoBmgJaA9DCA0c0NKVyG5AlIaUUpRoFUvyaBZHQJBSsAn2Iwd1fZQoaAZoCWgPQwjG+DB72fpwQJSGlFKUaBVNGAFoFkdAkFLqHj6vaHV9lChoBmgJaA9DCNRDNLoDDW5AlIaUUpRoFUvvaBZHQJBTPQ8fV7R1fZQoaAZoCWgPQwiQn41c9/1yQJSGlFKUaBVLzWgWR0CQU0cW0qpcdX2UKGgGaAloD0MIw4Nm1z12cUCUhpRSlGgVS+JoFkdAkFPGOp84P3V9lChoBmgJaA9DCPpH36RpkW1AlIaUUpRoFU0GAWgWR0CQVIMvRJEqdX2UKGgGaAloD0MISS7/IT3tckCUhpRSlGgVS+loFkdAkFTxLbpNbnV9lChoBmgJaA9DCGItPgWAy3BAlIaUUpRoFUvpaBZHQJBVGO4oZyd1fZQoaAZoCWgPQwi54uKo3OFwQJSGlFKUaBVL5WgWR0CQVVDwpe/pdX2UKGgGaAloD0MIXqCkwAKYckCUhpRSlGgVS/ZoFkdAkFWo/Vy3kXV9lChoBmgJaA9DCKrXLQKj6XJAlIaUUpRoFUviaBZHQJBV4kWykbh1fZQoaAZoCWgPQwjPoncq4HlwQJSGlFKUaBVL2mgWR0CQVezeoDPodX2UKGgGaAloD0MINszQeGJBckCUhpRSlGgVS+5oFkdAkFYtnkDIR3V9lChoBmgJaA9DCB9Hc2Tl5nJAlIaUUpRoFUvuaBZHQJBW/bDdgv11fZQoaAZoCWgPQwj8bU+QGBhxQJSGlFKUaBVL62gWR0CQV1dt2s7udX2UKGgGaAloD0MIHQOy1/sOckCUhpRSlGgVS/JoFkdAkFdXAM2FWXV9lChoBmgJaA9DCPH2IARk/G1AlIaUUpRoFUvkaBZHQJBXdgtvn8t1fZQoaAZoCWgPQwjm54amrPpzQJSGlFKUaBVL0mgWR0CQV368g6ltdX2UKGgGaAloD0MIGTvhJTiGcUCUhpRSlGgVS+1oFkdAkFgGeYlY2nV9lChoBmgJaA9DCLTjht+NGnFAlIaUUpRoFU0MAWgWR0CQWBRNRFZxdX2UKGgGaAloD0MI0y07xP+HcUCUhpRSlGgVTQYBaBZHQJBZD52yLQ51fZQoaAZoCWgPQwgQdopVg6JzQJSGlFKUaBVL5GgWR0CQWZMWXTmXdX2UKGgGaAloD0MIFm2Oc9vbcECUhpRSlGgVS+BoFkdAkFml+d9Uj3V9lChoBmgJaA9DCKyNsROef3BAlIaUUpRoFUv+aBZHQJBZsJ2MbWF1fZQoaAZoCWgPQwgWa7jIvXVzQJSGlFKUaBVL1WgWR0CQWjGff4yodX2UKGgGaAloD0MIpYY2AJtacUCUhpRSlGgVTQcBaBZHQJBapnRLK3d1fZQoaAZoCWgPQwi5xmeyf/ZvQJSGlFKUaBVL+GgWR0CQWrCzTnaGdX2UKGgGaAloD0MIDvYmhmTqb0CUhpRSlGgVS/BoFkdAkFsPqkdmx3V9lChoBmgJaA9DCLTonQr4UnJAlIaUUpRoFU0DAWgWR0CQWzAJLM9sdX2UKGgGaAloD0MIPKJCdTNQcUCUhpRSlGgVS9xoFkdAkHgUJfICEHV9lChoBmgJaA9DCGUbuAP1jHJAlIaUUpRoFU0AAWgWR0CQeGE4//vOdX2UKGgGaAloD0MIB8+EJokwckCUhpRSlGgVS+toFkdAkHh0GiYb83V9lChoBmgJaA9DCEoMAiuHNHBAlIaUUpRoFUv6aBZHQJB4mZa3Zwp1fZQoaAZoCWgPQwhBZfz7zMVxQJSGlFKUaBVNBgFoFkdAkIGr8R+SbHV9lChoBmgJaA9DCGQe+YNBlHBAlIaUUpRoFUvuaBZHQJCB1VYISlF1fZQoaAZoCWgPQwhW8UbmES5xQJSGlFKUaBVL8mgWR0CQgfDOkcjrdX2UKGgGaAloD0MIgv+tZEeZc0CUhpRSlGgVS+RoFkdAkIMYxgy/K3V9lChoBmgJaA9DCCkmb4CZT21AlIaUUpRoFUvmaBZHQJCDQNqgyuZ1fZQoaAZoCWgPQwhAo3TpHxdxQJSGlFKUaBVL7WgWR0CQg1t3fQ8fdX2UKGgGaAloD0MIJGO1+T/uckCUhpRSlGgVTQ0BaBZHQJCDdO1v2oN1fZQoaAZoCWgPQwgkYHR5M2dwQJSGlFKUaBVL42gWR0CQg67oB7u2dX2UKGgGaAloD0MImKWdmsuhckCUhpRSlGgVS95oFkdAkIQJU96kZnV9lChoBmgJaA9DCBanWgvz+3BAlIaUUpRoFUvnaBZHQJCEnYFqzqt1fZQoaAZoCWgPQwgwYp8Ait1xQJSGlFKUaBVL/mgWR0CQhURUFSsKdX2UKGgGaAloD0MI/te5afNkcUCUhpRSlGgVTRYBaBZHQJCFRIjGDL91fZQoaAZoCWgPQwghrMYSlhNyQJSGlFKUaBVL42gWR0CQheaRZEDydX2UKGgGaAloD0MIm1Q01v7KcUCUhpRSlGgVS+hoFkdAkIYrobGWEHV9lChoBmgJaA9DCCjzj76JD3FAlIaUUpRoFU0HAWgWR0CQhlO+qR2bdX2UKGgGaAloD0MI0J1g/7XGcECUhpRSlGgVS+doFkdAkIZqpkwvg3V9lChoBmgJaA9DCOoHdZFCKXJAlIaUUpRoFU0JAWgWR0CQhqWbwz+FdX2UKGgGaAloD0MITx4Wag22cUCUhpRSlGgVS+toFkdAkIaqZ+hGpnV9lChoBmgJaA9DCP5+MVsyqXFAlIaUUpRoFUv/aBZHQJCHI0EX+ER1fZQoaAZoCWgPQwgnSkIiLQVyQJSGlFKUaBVL2WgWR0CQh75Sm65HdX2UKGgGaAloD0MI5ZfBGNEPdECUhpRSlGgVS8VoFkdAkIfOLaVUuXV9lChoBmgJaA9DCF/U7leBDXNAlIaUUpRoFUvmaBZHQJCIH7FbVz91fZQoaAZoCWgPQwiZDwh0Jk1zQJSGlFKUaBVNBwFoFkdAkIiPz8P4EnV9lChoBmgJaA9DCDS8WYN3jXBAlIaUUpRoFUv0aBZHQJCIiHk92X91fZQoaAZoCWgPQwhf7L34ot9xQJSGlFKUaBVL5GgWR0CQiMxcVxjsdX2UKGgGaAloD0MIZ7lsdA7QcUCUhpRSlGgVS+hoFkdAkIlvuw5eaHV9lChoBmgJaA9DCCCWzRwS0HJAlIaUUpRoFUvUaBZHQJCJoGqxTsJ1fZQoaAZoCWgPQwhBR6ta0lRxQJSGlFKUaBVL+mgWR0CQimvQ4S6EdX2UKGgGaAloD0MIq7LviqARckCUhpRSlGgVS+BoFkdAkIp1TaTOgXV9lChoBmgJaA9DCM5twr1yt3NAlIaUUpRoFUvUaBZHQJCK8QAdXDF1fZQoaAZoCWgPQwgRc0nV9uFvQJSGlFKUaBVL7GgWR0CQivPjn3cpdX2UKGgGaAloD0MIc9h9xzC1ckCUhpRSlGgVS+9oFkdAkIs/C2tuDXV9lChoBmgJaA9DCHx716CvYXJAlIaUUpRoFUvsaBZHQJCLbVz6rNp1fZQoaAZoCWgPQwhMpDSbx/1KQJSGlFKUaBVLp2gWR0CQi4qO938odX2UKGgGaAloD0MIXTelvJaKcUCUhpRSlGgVTSYBaBZHQJCMSMYMvyt1fZQoaAZoCWgPQwi/K4L/bQdxQJSGlFKUaBVNDgFoFkdAkIy3nyNGVnV9lChoBmgJaA9DCAqCx7e3B3JAlIaUUpRoFUvyaBZHQJCMxPDYRNB1fZQoaAZoCWgPQwh+NQcIZiJwQJSGlFKUaBVL8mgWR0CQjNPldTo/dX2UKGgGaAloD0MIZylZTkJDcUCUhpRSlGgVS95oFkdAkI0bWI42j3V9lChoBmgJaA9DCFjGhm42YHJAlIaUUpRoFUvfaBZHQJCNY6o2n891fZQoaAZoCWgPQwhpGhTNAxdTQJSGlFKUaBVLmmgWR0CQjaPxhDw6dX2UKGgGaAloD0MILQq7KHqCbkCUhpRSlGgVTQoBaBZHQJCN+3QUpNN1fZQoaAZoCWgPQwhc5QmEnQ1wQJSGlFKUaBVL5WgWR0CQlra11GLDdX2UKGgGaAloD0MIwD+lSpT1SUCUhpRSlGgVS51oFkdAkJcZ66asqHV9lChoBmgJaA9DCBsrMc/KHnJAlIaUUpRoFU0JAWgWR0CQlznied08dX2UKGgGaAloD0MIxSCwcmgIbUCUhpRSlGgVS+RoFkdAkJdluJk5InV9lChoBmgJaA9DCPBuZYmOH3JAlIaUUpRoFUvraBZHQJCX+vdM0xd1fZQoaAZoCWgPQwhnDkktVFByQJSGlFKUaBVNAgFoFkdAkJhtHpbD/HV9lChoBmgJaA9DCO7of7lWt3BAlIaUUpRoFUvuaBZHQJCYfjin5zp1fZQoaAZoCWgPQwhwIvq1tVpyQJSGlFKUaBVNEgFoFkdAkJkAs5GSZHV9lChoBmgJaA9DCPLpsS1DvHFAlIaUUpRoFUvwaBZHQJCZznkkrwx1fZQoaAZoCWgPQwhV+glndwlwQJSGlFKUaBVL8WgWR0CQmeUKzAvddX2UKGgGaAloD0MI0XZM3VVwcUCUhpRSlGgVS+ZoFkdAkJn4ppeu3nV9lChoBmgJaA9DCFDkSdK1gnNAlIaUUpRoFU0BAWgWR0CQmiSKm8/VdX2UKGgGaAloD0MIVDiCVIr4bUCUhpRSlGgVTR0BaBZHQJCaVDG96C11fZQoaAZoCWgPQwjfisQENXduQJSGlFKUaBVL32gWR0CQmmFLnLaFdX2UKGgGaAloD0MIyXN9H45tcECUhpRSlGgVS/BoFkdAkJsGUOd5IHV9lChoBmgJaA9DCIHR5c2hS3FAlIaUUpRoFUv0aBZHQJCbb/YJ3Pl1fZQoaAZoCWgPQwiiJ2VSw7NyQJSGlFKUaBVNKQFoFkdAkJuK3d9DyHV9lChoBmgJaA9DCK+w4H5Ao29AlIaUUpRoFUvoaBZHQJCbuoS+QEJ1fZQoaAZoCWgPQwhfs1w2OrNxQJSGlFKUaBVL+mgWR0CQm/QXyiEhdX2UKGgGaAloD0MIj1GeeXnHcECUhpRSlGgVTQIBaBZHQJCcaXzDn/11fZQoaAZoCWgPQwhINIEiVn9xQJSGlFKUaBVL8WgWR0CQnLbjtG/fdX2UKGgGaAloD0MIkiIyrGLbcECUhpRSlGgVS+toFkdAkJ0diH6/I3V9lChoBmgJaA9DCPncCfbfAXBAlIaUUpRoFUvvaBZHQJCdIb961LJ1ZS4="
|
71 |
},
|
72 |
"ep_success_buffer": {
|
73 |
":type:": "<class 'collections.deque'>",
|
74 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
75 |
},
|
76 |
+
"_n_updates": 488,
|
77 |
"n_steps": 1024,
|
78 |
"gamma": 0.999,
|
79 |
"gae_lambda": 0.98,
|
|
|
84 |
"n_epochs": 4,
|
85 |
"clip_range": {
|
86 |
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2NvcmV5L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9jb3JleS9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
88 |
},
|
89 |
"clip_range_vf": null,
|
90 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:206c1a8e05b2d4c3b27f04b11e76a4ce6cf68c3bca6cbcf57f717ba7a40b41eb
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a640bcc82ec6b418276179fb19af01d9c3e41d7ec1c4fe2a8d350826541be9fc
|
3 |
+
size 43393
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.4.
|
2 |
-
Python: 3.
|
3 |
-
Stable-Baselines3: 1.
|
4 |
-
PyTorch: 1.
|
5 |
-
GPU Enabled: True
|
6 |
-
Numpy: 1.
|
7 |
-
Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.4.0-137-generic-x86_64-with-glibc2.17 # 154-Ubuntu SMP Thu Jan 5 17:03:22 UTC 2023
|
2 |
+
- Python: 3.8.15
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 267.8749631, "std_reward": 21.100035115092965, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T01:06:43.544303"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0e83039644a6f6388468c54e7960f1468459c6ad482d6972b3c6767859dc33a
|
3 |
+
size 107166
|