Corianas commited on
Commit
86f8269
·
verified ·
1 Parent(s): 6c5f6f3

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -13,9 +13,9 @@ base_model:
13
  - Corianas/TinyTask-minipaca
14
  ---
15
 
16
- # Tiny-Moe
17
 
18
- Tiny-Moe is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
19
  * [Corianas/Tiny_Test](https://huggingface.co/Corianas/Tiny_Test)
20
  * [Corianas/TinyTask-minipaca](https://huggingface.co/Corianas/TinyTask-minipaca)
21
 
@@ -23,18 +23,22 @@ Tiny-Moe is a Mixture of Experts (MoE) made with the following models using [Laz
23
 
24
  ```yaml
25
  base_model: Corianas/Tiny_Test
26
- gate_mode: random # one of "hidden", "cheap_embed", or "random"
27
  dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
28
  ## (optional)
29
  # experts_per_token: 2
30
  experts:
31
  - source_model: Corianas/Tiny_Test
 
 
32
  ## (optional)
33
  # negative_prompts:
34
  # - "This is a prompt expert_model_1 should not be used for"
35
  - source_model: Corianas/TinyTask-minipaca
36
  # ... and so on
37
- ```
 
 
38
 
39
  ## 💻 Usage
40
 
@@ -45,7 +49,7 @@ from transformers import AutoTokenizer
45
  import transformers
46
  import torch
47
 
48
- model = "Corianas/Tiny-Moe"
49
 
50
  tokenizer = AutoTokenizer.from_pretrained(model)
51
  pipeline = transformers.pipeline(
 
13
  - Corianas/TinyTask-minipaca
14
  ---
15
 
16
+ # Tiny-moe
17
 
18
+ Tiny-moe is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
19
  * [Corianas/Tiny_Test](https://huggingface.co/Corianas/Tiny_Test)
20
  * [Corianas/TinyTask-minipaca](https://huggingface.co/Corianas/TinyTask-minipaca)
21
 
 
23
 
24
  ```yaml
25
  base_model: Corianas/Tiny_Test
26
+ gate_mode: cheap_embed # one of "hidden", "cheap_embed", or "random"
27
  dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
28
  ## (optional)
29
  # experts_per_token: 2
30
  experts:
31
  - source_model: Corianas/Tiny_Test
32
+ positive_prompts:
33
+ - "↨once upon a time"
34
  ## (optional)
35
  # negative_prompts:
36
  # - "This is a prompt expert_model_1 should not be used for"
37
  - source_model: Corianas/TinyTask-minipaca
38
  # ... and so on
39
+ positive_prompts:
40
+ - "↨please"
41
+ ```
42
 
43
  ## 💻 Usage
44
 
 
49
  import transformers
50
  import torch
51
 
52
+ model = "Corianas/Tiny-moe"
53
 
54
  tokenizer = AutoTokenizer.from_pretrained(model)
55
  pipeline = transformers.pipeline(
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Corianas/Tiny_Test",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 2048,
14
+ "max_position_embeddings": 2048,
15
+ "model_type": "mixtral",
16
+ "num_attention_heads": 12,
17
+ "num_experts_per_tok": 2,
18
+ "num_hidden_layers": 12,
19
+ "num_key_value_heads": 12,
20
+ "num_local_experts": 2,
21
+ "output_router_logits": false,
22
+ "pad_token_id": 0,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
+ "router_aux_loss_coef": 0.001,
28
+ "sliding_window": null,
29
+ "tie_word_embeddings": true,
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.39.1",
32
+ "use_cache": true,
33
+ "vocab_size": 4096
34
+ }
mergekit_moe_config.yml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ base_model: Corianas/Tiny_Test
3
+ gate_mode: cheap_embed # one of "hidden", "cheap_embed", or "random"
4
+ dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
5
+ ## (optional)
6
+ # experts_per_token: 2
7
+ experts:
8
+ - source_model: Corianas/Tiny_Test
9
+ positive_prompts:
10
+ - "↨once upon a time"
11
+ ## (optional)
12
+ # negative_prompts:
13
+ # - "This is a prompt expert_model_1 should not be used for"
14
+ - source_model: Corianas/TinyTask-minipaca
15
+ # ... and so on
16
+ positive_prompts:
17
+ - "↨please"
18
+
model-00001-of-00001.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:841277f1653d92947e3c56780d769c859a1b898097fa39bbd02b0e75fce0af14
3
+ size 295792600
model.safetensors.index.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata": {"mergekit_version": "0.0.4"}, "weight_map": {"model.embed_tokens.weight": "model-00001-of-00001.safetensors", "model.norm.weight": "model-00001-of-00001.safetensors", "lm_head.weight": "model-00001-of-00001.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.6.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.7.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.8.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.9.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.10.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.11.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors"}}
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:715c8a067b87893f09a5347adb7a5ccebe2df62c035deb0e900c4cb944e42ff5
3
+ size 64838
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "<s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }