File size: 13,682 Bytes
c165cd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import logging
import os
import sys
import time
import accelerate
from absl import app
import gin
from internal import configs
from internal import datasets
from internal import image
from internal import models
from internal import raw_utils
from internal import ref_utils
from internal import train_utils
from internal import checkpoints
from internal import utils
from internal import vis
import numpy as np
import torch
import tensorboardX
from torch.utils._pytree import tree_map
configs.define_common_flags()
def summarize_results(folder, scene_names, num_buckets):
metric_names = ['psnrs', 'ssims', 'lpips']
num_iters = 1000000
precisions = [3, 4, 4, 4]
results = []
for scene_name in scene_names:
test_preds_folder = os.path.join(folder, scene_name, 'test_preds')
values = []
for metric_name in metric_names:
filename = os.path.join(folder, scene_name, 'test_preds', f'{metric_name}_{num_iters}.txt')
with utils.open_file(filename) as f:
v = np.array([float(s) for s in f.readline().split(' ')])
values.append(np.mean(np.reshape(v, [-1, num_buckets]), 0))
results.append(np.concatenate(values))
avg_results = np.mean(np.array(results), 0)
psnr, ssim, lpips = np.mean(np.reshape(avg_results, [-1, num_buckets]), 1)
mse = np.exp(-0.1 * np.log(10.) * psnr)
dssim = np.sqrt(1 - ssim)
avg_avg = np.exp(np.mean(np.log(np.array([mse, dssim, lpips]))))
s = []
for i, v in enumerate(np.reshape(avg_results, [-1, num_buckets])):
s.append(' '.join([f'{s:0.{precisions[i]}f}' for s in v]))
s.append(f'{avg_avg:0.{precisions[-1]}f}')
return ' | '.join(s)
def main(unused_argv):
config = configs.load_config()
config.exp_path = os.path.join('exp', config.exp_name)
config.checkpoint_dir = os.path.join(config.exp_path, 'checkpoints')
config.render_dir = os.path.join(config.exp_path, 'render')
accelerator = accelerate.Accelerator()
# setup logger
logging.basicConfig(
format="%(asctime)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
force=True,
handlers=[logging.StreamHandler(sys.stdout),
logging.FileHandler(os.path.join(config.exp_path, 'log_eval.txt'))],
level=logging.INFO,
)
sys.excepthook = utils.handle_exception
logger = accelerate.logging.get_logger(__name__)
logger.info(config)
logger.info(accelerator.state, main_process_only=False)
config.world_size = accelerator.num_processes
config.global_rank = accelerator.process_index
accelerate.utils.set_seed(config.seed, device_specific=True)
model = models.Model(config=config)
model.eval()
model.to(accelerator.device)
dataset = datasets.load_dataset('test', config.data_dir, config)
dataloader = torch.utils.data.DataLoader(np.arange(len(dataset)),
shuffle=False,
batch_size=1,
collate_fn=dataset.collate_fn,
)
tb_process_fn = lambda x: x.transpose(2, 0, 1) if len(x.shape) == 3 else x[None]
if config.rawnerf_mode:
postprocess_fn = dataset.metadata['postprocess_fn']
else:
postprocess_fn = lambda z: z
if config.eval_raw_affine_cc:
cc_fun = raw_utils.match_images_affine
else:
cc_fun = image.color_correct
model = accelerator.prepare(model)
metric_harness = image.MetricHarness()
last_step = 0
out_dir = os.path.join(config.exp_path,
'path_renders' if config.render_path else 'test_preds')
path_fn = lambda x: os.path.join(out_dir, x)
if not config.eval_only_once:
summary_writer = tensorboardX.SummaryWriter(
os.path.join(config.exp_path, 'eval'))
while True:
step = checkpoints.restore_checkpoint(config.checkpoint_dir, accelerator, logger)
if step <= last_step:
logger.info(f'Checkpoint step {step} <= last step {last_step}, sleeping.')
time.sleep(10)
continue
logger.info(f'Evaluating checkpoint at step {step}.')
if config.eval_save_output and (not utils.isdir(out_dir)):
utils.makedirs(out_dir)
num_eval = min(dataset.size, config.eval_dataset_limit)
perm = np.random.permutation(num_eval)
showcase_indices = np.sort(perm[:config.num_showcase_images])
metrics = []
metrics_cc = []
showcases = []
render_times = []
for idx, batch in enumerate(dataloader):
batch = accelerate.utils.send_to_device(batch, accelerator.device)
eval_start_time = time.time()
if idx >= num_eval:
logger.info(f'Skipping image {idx + 1}/{dataset.size}')
continue
logger.info(f'Evaluating image {idx + 1}/{dataset.size}')
rendering = models.render_image(model, accelerator,
batch, False, 1, config)
if not accelerator.is_main_process: # Only record via host 0.
continue
render_times.append((time.time() - eval_start_time))
logger.info(f'Rendered in {render_times[-1]:0.3f}s')
cc_start_time = time.time()
rendering['rgb_cc'] = cc_fun(rendering['rgb'], batch['rgb'])
rendering = tree_map(lambda x: x.detach().cpu().numpy() if x is not None else None, rendering)
batch = tree_map(lambda x: x.detach().cpu().numpy() if x is not None else None, batch)
gt_rgb = batch['rgb']
logger.info(f'Color corrected in {(time.time() - cc_start_time):0.3f}s')
if not config.eval_only_once and idx in showcase_indices:
showcase_idx = idx if config.deterministic_showcase else len(showcases)
showcases.append((showcase_idx, rendering, batch))
if not config.render_path:
rgb = postprocess_fn(rendering['rgb'])
rgb_cc = postprocess_fn(rendering['rgb_cc'])
rgb_gt = postprocess_fn(gt_rgb)
if config.eval_quantize_metrics:
# Ensures that the images written to disk reproduce the metrics.
rgb = np.round(rgb * 255) / 255
rgb_cc = np.round(rgb_cc * 255) / 255
if config.eval_crop_borders > 0:
crop_fn = lambda x, c=config.eval_crop_borders: x[c:-c, c:-c]
rgb = crop_fn(rgb)
rgb_cc = crop_fn(rgb_cc)
rgb_gt = crop_fn(rgb_gt)
metric = metric_harness(rgb, rgb_gt)
metric_cc = metric_harness(rgb_cc, rgb_gt)
if config.compute_disp_metrics:
for tag in ['mean', 'median']:
key = f'distance_{tag}'
if key in rendering:
disparity = 1 / (1 + rendering[key])
metric[f'disparity_{tag}_mse'] = float(
((disparity - batch['disps']) ** 2).mean())
if config.compute_normal_metrics:
weights = rendering['acc'] * batch['alphas']
normalized_normals_gt = ref_utils.l2_normalize_np(batch['normals'])
for key, val in rendering.items():
if key.startswith('normals') and val is not None:
normalized_normals = ref_utils.l2_normalize_np(val)
metric[key + '_mae'] = ref_utils.compute_weighted_mae_np(
weights, normalized_normals, normalized_normals_gt)
for m, v in metric.items():
logger.info(f'{m:30s} = {v:.4f}')
metrics.append(metric)
metrics_cc.append(metric_cc)
if config.eval_save_output and (config.eval_render_interval > 0):
if (idx % config.eval_render_interval) == 0:
utils.save_img_u8(postprocess_fn(rendering['rgb']),
path_fn(f'color_{idx:03d}.png'))
utils.save_img_u8(postprocess_fn(rendering['rgb_cc']),
path_fn(f'color_cc_{idx:03d}.png'))
for key in ['distance_mean', 'distance_median']:
if key in rendering:
utils.save_img_f32(rendering[key],
path_fn(f'{key}_{idx:03d}.tiff'))
for key in ['normals']:
if key in rendering:
utils.save_img_u8(rendering[key] / 2. + 0.5,
path_fn(f'{key}_{idx:03d}.png'))
utils.save_img_f32(rendering['acc'], path_fn(f'acc_{idx:03d}.tiff'))
if (not config.eval_only_once) and accelerator.is_main_process:
summary_writer.add_scalar('eval_median_render_time', np.median(render_times),
step)
for name in metrics[0]:
scores = [m[name] for m in metrics]
summary_writer.add_scalar('eval_metrics/' + name, np.mean(scores), step)
summary_writer.add_histogram('eval_metrics/' + 'perimage_' + name, scores,
step)
for name in metrics_cc[0]:
scores = [m[name] for m in metrics_cc]
summary_writer.add_scalar('eval_metrics_cc/' + name, np.mean(scores), step)
summary_writer.add_histogram('eval_metrics_cc/' + 'perimage_' + name,
scores, step)
for i, r, b in showcases:
if config.vis_decimate > 1:
d = config.vis_decimate
decimate_fn = lambda x, d=d: None if x is None else x[::d, ::d]
else:
decimate_fn = lambda x: x
r = tree_map(decimate_fn, r)
b = tree_map(decimate_fn, b)
visualizations = vis.visualize_suite(r, b)
for k, v in visualizations.items():
if k == 'color':
v = postprocess_fn(v)
summary_writer.add_image(f'output_{k}_{i}', tb_process_fn(v), step)
if not config.render_path:
target = postprocess_fn(b['rgb'])
summary_writer.add_image(f'true_color_{i}', tb_process_fn(target), step)
pred = postprocess_fn(visualizations['color'])
residual = np.clip(pred - target + 0.5, 0, 1)
summary_writer.add_image(f'true_residual_{i}', tb_process_fn(residual), step)
if config.compute_normal_metrics:
summary_writer.add_image(f'true_normals_{i}', tb_process_fn(b['normals']) / 2. + 0.5,
step)
if (config.eval_save_output and (not config.render_path) and
accelerator.is_main_process):
with utils.open_file(path_fn(f'render_times_{step}.txt'), 'w') as f:
f.write(' '.join([str(r) for r in render_times]))
logger.info(f'metrics:')
results = {}
num_buckets = config.multiscale_levels if config.multiscale else 1
for name in metrics[0]:
with utils.open_file(path_fn(f'metric_{name}_{step}.txt'), 'w') as f:
ms = [m[name] for m in metrics]
f.write(' '.join([str(m) for m in ms]))
results[name] = ' | '.join(
list(map(str, np.mean(np.array(ms).reshape([-1, num_buckets]), 0).tolist())))
with utils.open_file(path_fn(f'metric_avg_{step}.txt'), 'w') as f:
for name in metrics[0]:
f.write(f'{name}: {results[name]}\n')
logger.info(f'{name}: {results[name]}')
logger.info(f'metrics_cc:')
results_cc = {}
for name in metrics_cc[0]:
with utils.open_file(path_fn(f'metric_cc_{name}_{step}.txt'), 'w') as f:
ms = [m[name] for m in metrics_cc]
f.write(' '.join([str(m) for m in ms]))
results_cc[name] = ' | '.join(
list(map(str, np.mean(np.array(ms).reshape([-1, num_buckets]), 0).tolist())))
with utils.open_file(path_fn(f'metric_cc_avg_{step}.txt'), 'w') as f:
for name in metrics[0]:
f.write(f'{name}: {results_cc[name]}\n')
logger.info(f'{name}: {results_cc[name]}')
if config.eval_save_ray_data:
for i, r, b in showcases:
rays = {k: v for k, v in r.items() if 'ray_' in k}
np.set_printoptions(threshold=sys.maxsize)
with utils.open_file(path_fn(f'ray_data_{step}_{i}.txt'), 'w') as f:
f.write(repr(rays))
if config.eval_only_once:
break
if config.early_exit_steps is not None:
num_steps = config.early_exit_steps
else:
num_steps = config.max_steps
if int(step) >= num_steps:
break
last_step = step
logger.info('Finish evaluation.')
if __name__ == '__main__':
with gin.config_scope('eval'):
app.run(main)
|