|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
import random |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig |
|
from datasets import load_dataset |
|
from transformers import TrainingArguments |
|
from accelerate import infer_auto_device_map, init_empty_weights, dispatch_model |
|
from trl import SFTTrainer |
|
from peft import LoraConfig |
|
from torch.nn import CrossEntropyLoss |
|
import time |
|
import gc |
|
|
|
random_seed = 42 |
|
torch.manual_seed(random_seed) |
|
random.seed(random_seed) |
|
|
|
dataset = load_dataset("HuggingFaceH4/orca-math-word-problems-200k", split="train_sft").select(range(3000)) |
|
|
|
|
|
n_ahead_talk_global = 2 |
|
n_passes_global = 1 |
|
n_ahead_global = 8 |
|
|
|
|
|
|
|
def model_init(params): |
|
original = False |
|
if params is None: |
|
params = {} |
|
else: |
|
params = params.params |
|
|
|
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1) |
|
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1) |
|
n_passes = params.get("n_passes", n_passes_global if not original else 1) |
|
gumbel_temperature = params.get("gumbel_temperature", 1) |
|
use_start_thought_token = params.get("use_start_thought_token", True) |
|
use_end_thought_token = params.get("use_end_thought_token", True) |
|
include_policy_loss = params.get("include_policy_loss", True) |
|
gumbel_detach = params.get("gumbel_detach", True) |
|
merged_talk_heads = params.get("merged_talk_heads", True) |
|
residual_think_head = params.get("residual_think_head", False) |
|
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False) |
|
|
|
model_id = "Crystalcareai/Quiet-Star-Custom" |
|
tokenizer_id = model_id |
|
print("Loading model") |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, |
|
max_thoughts=n_ahead + n_ahead_talk + 1, |
|
merged_talk_heads=merged_talk_heads, |
|
merged_lm_and_talk_heads=False, |
|
merged_lm_and_think_heads=True, |
|
use_concat_talk_head=True, |
|
use_shallow_think=True, |
|
use_shallow_talk=False, |
|
use_complex_think_head=False, |
|
use_complex_talk_head=True, |
|
use_weighted_talk_head=True, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
) |
|
print("Loaded model") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right") |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
special_tokens_to_add = [] |
|
if model.use_start_thought_token: |
|
special_tokens_to_add.append("<|startthought|>") |
|
if model.use_end_thought_token: |
|
special_tokens_to_add.append("<|endthought|>") |
|
if special_tokens_to_add: |
|
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add}) |
|
model.tokenizer = tokenizer |
|
for name, module in model.named_modules(): |
|
if "embed" in name: |
|
print(module, flush=True) |
|
|
|
model.gumbel_detach = gumbel_detach |
|
model.include_policy_loss = include_policy_loss |
|
model.use_end_thought_token = use_end_thought_token |
|
model.use_start_thought_token = use_start_thought_token |
|
model.n_ahead = n_ahead |
|
model.n_ahead_talk = n_ahead_talk |
|
model.n_passes = n_passes |
|
model.residual_think_head = residual_think_head |
|
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start |
|
model.gumbel_temperature = gumbel_temperature |
|
model.original_mode = original |
|
model.config_params = params |
|
model.run_start = int(time.time()) |
|
model.train() |
|
return model |
|
|
|
max_seq_length = 8192 |
|
run_id = int(time.time()) |
|
training_args = TrainingArguments( |
|
output_dir="./out", |
|
num_train_epochs=1, |
|
per_device_train_batch_size=1, |
|
gradient_checkpointing=False, |
|
gradient_accumulation_steps=1, |
|
optim="lion_32bit", |
|
logging_steps=1, |
|
save_strategy="steps", |
|
save_steps=100, |
|
max_steps=-1, |
|
|
|
weight_decay=0.001, |
|
bf16=True, |
|
|
|
tf32=True, |
|
learning_rate=1e-07, |
|
max_grad_norm=0, |
|
warmup_steps=20, |
|
lr_scheduler_type="constant", |
|
push_to_hub=False, |
|
report_to="wandb" |
|
) |
|
|
|
peft_config = LoraConfig( |
|
r = 8, |
|
target_modules =["up_proj", "down_proj", "gate_proj"], |
|
lora_alpha = 32, |
|
lora_dropout = 0, |
|
bias = "none", |
|
use_dora=False, |
|
task_type="CAUSAL_LM" |
|
) |
|
|
|
torch.autograd.set_detect_anomaly(True) |
|
|
|
class CustomSFTTrainer(SFTTrainer): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.beta = 0.9 |
|
self.clip_factor = 1.0 |
|
self.moving_avg = 0.0 |
|
|
|
def training_step(self, model, inputs): |
|
model.train() |
|
inputs = self._prepare_inputs(inputs) |
|
|
|
outputs = model(**inputs) |
|
loss = outputs.loss if isinstance(outputs, dict) else outputs[0] |
|
|
|
if self.args.gradient_accumulation_steps > 1: |
|
loss = loss / self.args.gradient_accumulation_steps |
|
|
|
loss.backward() |
|
|
|
|
|
grad_norm = torch.sqrt(sum(p.grad.data.norm().to(model.device)**2 for p in model.parameters() if p.grad is not None)) |
|
|
|
|
|
if self.state.global_step == 0: |
|
self.moving_avg = grad_norm |
|
else: |
|
self.moving_avg = self.beta * self.moving_avg + (1 - self.beta) * grad_norm |
|
|
|
if grad_norm > self.clip_factor * self.moving_avg: |
|
clip_coef = (self.clip_factor * self.moving_avg / grad_norm).item() |
|
for param in model.parameters(): |
|
if param.grad is not None: |
|
param.grad.data.mul_(clip_coef) |
|
|
|
if (self.state.global_step + 1) % self.args.gradient_accumulation_steps == 0: |
|
self.optimizer.step() |
|
self.lr_scheduler.step() |
|
model.zero_grad() |
|
self.state.global_step += 1 |
|
|
|
|
|
return loss |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
model = model_init(None) |
|
|
|
trainer = CustomSFTTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset, |
|
tokenizer=model.tokenizer, |
|
max_seq_length=max_seq_length, |
|
peft_config=peft_config, |
|
) |
|
|
|
trainer.train() |