Crystalcareai
commited on
Update modeling_quiet.py
Browse files- modeling_quiet.py +33 -37
modeling_quiet.py
CHANGED
@@ -1328,46 +1328,42 @@ class QuietForCausalLM(QuietPreTrainedModel, GenerationMixin):
|
|
1328 |
def generate(self, input_ids, attention_mask=None, **kwargs):
|
1329 |
if attention_mask is None:
|
1330 |
attention_mask = torch.ones_like(input_ids)
|
1331 |
-
|
1332 |
max_length = kwargs.get("max_length", 20)
|
1333 |
temp = kwargs.get("temperature", 1.0)
|
1334 |
|
1335 |
-
|
1336 |
-
|
1337 |
-
|
1338 |
-
|
1339 |
-
|
1340 |
-
|
1341 |
-
|
1342 |
-
|
1343 |
-
|
1344 |
-
|
1345 |
-
|
1346 |
-
|
1347 |
-
|
1348 |
-
|
1349 |
-
|
1350 |
-
|
1351 |
-
|
1352 |
-
|
1353 |
-
|
1354 |
-
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
1361 |
-
|
1362 |
-
|
1363 |
-
|
1364 |
-
if
|
1365 |
-
|
1366 |
-
|
1367 |
-
if finished_generating.all():
|
1368 |
-
break
|
1369 |
-
|
1370 |
-
return input_ids
|
1371 |
|
1372 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1373 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
|
1328 |
def generate(self, input_ids, attention_mask=None, **kwargs):
|
1329 |
if attention_mask is None:
|
1330 |
attention_mask = torch.ones_like(input_ids)
|
1331 |
+
|
1332 |
max_length = kwargs.get("max_length", 20)
|
1333 |
temp = kwargs.get("temperature", 1.0)
|
1334 |
|
1335 |
+
with torch.no_grad():
|
1336 |
+
finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=input_ids.device)
|
1337 |
+
for cur_token_idx in range(max_length):
|
1338 |
+
# Sample the next token
|
1339 |
+
new_ids = self(
|
1340 |
+
input_ids[~finished_generating],
|
1341 |
+
attention_mask=attention_mask[~finished_generating]
|
1342 |
+
)['logits']
|
1343 |
+
# Mask out the start and end thought tokens so we don't accidentally sample them
|
1344 |
+
new_ids[:, :, self.tokenizer.vocab_size:] = -float("inf")
|
1345 |
+
for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
|
1346 |
+
# Find the index of the last token that is not padding
|
1347 |
+
base_answer_ids = input_ids[answer_idx]
|
1348 |
+
new_answer_ids = new_ids[list_idx]
|
1349 |
+
last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
1350 |
+
|
1351 |
+
new_ids_sampled = torch.multinomial(
|
1352 |
+
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temp, dim=-1), 1)
|
1353 |
+
# Assign the new id to the last token
|
1354 |
+
if last_token_idx + 1 >= len(base_answer_ids):
|
1355 |
+
# Add padding everywhere
|
1356 |
+
new_padding = torch.full((len(input_ids), 1), self.tokenizer.pad_token_id, dtype=torch.long,
|
1357 |
+
device=input_ids.device)
|
1358 |
+
input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
1359 |
+
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
1360 |
+
attention_mask[answer_idx, last_token_idx + 1] = 1
|
1361 |
+
input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled
|
1362 |
+
if new_ids_sampled == self.tokenizer.eos_token_id or new_ids_sampled == self.tokenizer.bos_token_id or new_ids_sampled == self.tokenizer.pad_token_id:
|
1363 |
+
finished_generating[answer_idx] = 1
|
1364 |
+
if finished_generating.all():
|
1365 |
+
break
|
1366 |
+
return input_ids, attention_mask
|
|
|
|
|
|
|
|
|
1367 |
|
1368 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1369 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|