Crystalcareai
commited on
Update inference.py
Browse files- inference.py +40 -49
inference.py
CHANGED
@@ -1,57 +1,48 @@
|
|
|
|
1 |
import torch
|
2 |
-
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM,
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
prompt_template = "[INST] {prompt} [/INST]"
|
15 |
-
prompt = "This is a reasoning problem. You're standing on the surface of the Earth. " \
|
16 |
-
"You walk one mile south, one mile west and one mile north. " \
|
17 |
-
"You end up exactly where you started. Where are EXACTLY on earth you?"
|
18 |
-
|
19 |
-
input_text = prompt
|
20 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
21 |
-
attention_mask = torch.ones_like(input_ids).to(device)
|
22 |
|
23 |
-
|
|
|
|
|
24 |
|
25 |
-
|
26 |
prompt_template.format(prompt=prompt),
|
27 |
return_tensors='pt'
|
28 |
).input_ids.cuda()
|
29 |
|
30 |
-
# Generate
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
pad_token_id=tokenizer.eos_token_id,
|
45 |
-
eos_token_id=tokenizer.eos_token_id,
|
46 |
-
output_attentions=False,
|
47 |
-
output_hidden_states=False,
|
48 |
-
return_dict_in_generate=True,
|
49 |
-
streamer=streamer,
|
50 |
-
)
|
51 |
-
|
52 |
-
# Decode the generated output
|
53 |
-
generated_text = tokenizer.decode(generated_outputs.sequences[0], skip_special_tokens=True)
|
54 |
-
|
55 |
-
# Print the generated output
|
56 |
-
print("Generated output:")
|
57 |
-
print(generated_text)
|
|
|
1 |
+
import gc
|
2 |
import torch
|
3 |
+
from tqdm import tqdm
|
4 |
+
from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM, AutoConfig
|
5 |
+
|
6 |
+
model_path = "Crystalcareai/Quiet-Star-Custom"
|
7 |
+
|
8 |
+
# Load model
|
9 |
+
config = AutoConfig.from_pretrained(model_path, max_position_embeddings=2048, use_cache=False, trust_remote_code=True)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_path,
|
12 |
+
config=config,
|
13 |
+
device_map="auto",
|
14 |
+
low_cpu_mem_usage=True,
|
15 |
+
torch_dtype=torch.bfloat16,
|
16 |
+
trust_remote_code=True,
|
17 |
+
)
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
+
model.tokenizer = tokenizer # Assign the tokenizer to the model instance
|
21 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False)
|
22 |
+
|
23 |
+
# Convert prompt to tokens
|
24 |
prompt_template = "[INST] {prompt} [/INST]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
prompt = "You're standing on the surface of the Earth. "\
|
27 |
+
"You walk one mile south, one mile west and one mile north. "\
|
28 |
+
"You end up exactly where you started. Where are you?"
|
29 |
|
30 |
+
input_ids = tokenizer(
|
31 |
prompt_template.format(prompt=prompt),
|
32 |
return_tensors='pt'
|
33 |
).input_ids.cuda()
|
34 |
|
35 |
+
# Generate output
|
36 |
+
generation_output = model.generate(
|
37 |
+
input_ids,
|
38 |
+
max_length=1024,
|
39 |
+
do_sample=True,
|
40 |
+
top_k=50,
|
41 |
+
top_p=0.95,
|
42 |
+
num_return_sequences=1,
|
43 |
+
streamer=streamer,
|
44 |
+
)
|
45 |
+
|
46 |
+
# Decode the output
|
47 |
+
generated_text = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
48 |
+
print(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|