Crystalcareai
commited on
Update train.py
Browse files
train.py
CHANGED
@@ -14,10 +14,11 @@ random.seed(random_seed)
|
|
14 |
|
15 |
dataset = load_dataset("HuggingFaceH4/deita-10k-v0-sft", split="train_sft")
|
16 |
|
17 |
-
n_ahead_talk_global =
|
18 |
n_passes_global = 2
|
19 |
-
n_ahead_global =
|
20 |
-
|
|
|
21 |
eval_and_logging_steps = 2
|
22 |
save_steps = 100
|
23 |
|
@@ -43,11 +44,11 @@ def model_init(params):
|
|
43 |
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
44 |
|
45 |
model_id = "Crystalcareai/Quiet-Star-Custom"
|
46 |
-
tokenizer_id =
|
47 |
print("Loading model")
|
48 |
model = AutoModelForCausalLM.from_pretrained(
|
49 |
model_id,
|
50 |
-
torch_dtype=torch.
|
51 |
max_thoughts=n_ahead + n_ahead_talk + 1,
|
52 |
merged_talk_heads=merged_talk_heads,
|
53 |
merged_lm_and_talk_heads=False,
|
@@ -58,13 +59,12 @@ def model_init(params):
|
|
58 |
use_complex_think_head=False,
|
59 |
use_complex_talk_head=True,
|
60 |
use_weighted_talk_head=True,
|
61 |
-
trust_remote_code=True,
|
62 |
-
|
63 |
)
|
64 |
print("Loaded model")
|
65 |
|
66 |
-
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
67 |
-
tokenizer.padding_side = "right"
|
68 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
69 |
|
70 |
special_tokens_to_add = []
|
@@ -103,31 +103,33 @@ training_args = TrainingArguments(
|
|
103 |
output_dir="./out",
|
104 |
num_train_epochs=3,
|
105 |
per_device_train_batch_size=1,
|
106 |
-
|
107 |
-
|
108 |
-
optim="
|
109 |
-
logging_steps=
|
110 |
save_strategy="steps",
|
111 |
save_steps=300,
|
112 |
bf16=True,
|
113 |
tf32=False,
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
118 |
push_to_hub=False,
|
119 |
)
|
120 |
|
121 |
-
peft_config = LoraConfig(
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
)
|
130 |
|
|
|
131 |
model = model_init(None) # Initialize the model
|
132 |
tokenizer = model.tokenizer
|
133 |
|
@@ -135,8 +137,8 @@ trainer = SFTTrainer(
|
|
135 |
args=training_args,
|
136 |
train_dataset=dataset,
|
137 |
model=model,
|
138 |
-
peft_config=peft_config,
|
139 |
tokenizer=tokenizer,
|
140 |
)
|
141 |
|
142 |
-
trainer.train()
|
|
|
14 |
|
15 |
dataset = load_dataset("HuggingFaceH4/deita-10k-v0-sft", split="train_sft")
|
16 |
|
17 |
+
n_ahead_talk_global = 2
|
18 |
n_passes_global = 2
|
19 |
+
n_ahead_global = 2
|
20 |
+
n_examples = 0
|
21 |
+
full_batch_size = 2
|
22 |
eval_and_logging_steps = 2
|
23 |
save_steps = 100
|
24 |
|
|
|
44 |
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
45 |
|
46 |
model_id = "Crystalcareai/Quiet-Star-Custom"
|
47 |
+
tokenizer_id = model_id
|
48 |
print("Loading model")
|
49 |
model = AutoModelForCausalLM.from_pretrained(
|
50 |
model_id,
|
51 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
52 |
max_thoughts=n_ahead + n_ahead_talk + 1,
|
53 |
merged_talk_heads=merged_talk_heads,
|
54 |
merged_lm_and_talk_heads=False,
|
|
|
59 |
use_complex_think_head=False,
|
60 |
use_complex_talk_head=True,
|
61 |
use_weighted_talk_head=True,
|
62 |
+
trust_remote_code=True,
|
63 |
+
device_map="auto",
|
64 |
)
|
65 |
print("Loaded model")
|
66 |
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id,padding=False,truncation=True)
|
|
|
68 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
69 |
|
70 |
special_tokens_to_add = []
|
|
|
103 |
output_dir="./out",
|
104 |
num_train_epochs=3,
|
105 |
per_device_train_batch_size=1,
|
106 |
+
gradient_checkpointing=False,
|
107 |
+
gradient_accumulation_steps=4,
|
108 |
+
optim="adamw_torch_fused",
|
109 |
+
logging_steps=1,
|
110 |
save_strategy="steps",
|
111 |
save_steps=300,
|
112 |
bf16=True,
|
113 |
tf32=False,
|
114 |
+
# auto_find_batch_size=True
|
115 |
+
learning_rate=2e-07,
|
116 |
+
max_grad_norm=1.0, # Gradient clipping with a maximum gradient norm of 0.3
|
117 |
+
warmup_steps=100,
|
118 |
+
lr_scheduler_type="cosine",
|
119 |
push_to_hub=False,
|
120 |
)
|
121 |
|
122 |
+
# peft_config = LoraConfig(
|
123 |
+
# r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
124 |
+
# target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
125 |
+
# "gate_proj", "up_proj", "down_proj",],
|
126 |
+
# lora_alpha = 16,
|
127 |
+
# lora_dropout = 0, # Supports any, but = 0 is optimized
|
128 |
+
# bias = "none", # Enable Dora method
|
129 |
+
# use_dora=True,
|
130 |
+
# )
|
131 |
|
132 |
+
torch.autograd.set_detect_anomaly(True)
|
133 |
model = model_init(None) # Initialize the model
|
134 |
tokenizer = model.tokenizer
|
135 |
|
|
|
137 |
args=training_args,
|
138 |
train_dataset=dataset,
|
139 |
model=model,
|
140 |
+
# peft_config=peft_config,
|
141 |
tokenizer=tokenizer,
|
142 |
)
|
143 |
|
144 |
+
trainer.train()
|