Crystalcareai
commited on
Update train.py
Browse files
train.py
CHANGED
@@ -7,20 +7,19 @@ from transformers import TrainingArguments
|
|
7 |
from trl import SFTTrainer
|
8 |
from peft import LoraConfig
|
9 |
|
|
|
10 |
import time
|
11 |
random_seed = 42
|
12 |
torch.manual_seed(random_seed)
|
13 |
random.seed(random_seed)
|
14 |
|
15 |
-
dataset = load_dataset("
|
16 |
|
17 |
-
n_ahead_talk_global =
|
18 |
n_passes_global = 2
|
19 |
n_ahead_global = 2
|
20 |
n_examples = 0
|
21 |
-
|
22 |
-
eval_and_logging_steps = 2
|
23 |
-
save_steps = 100
|
24 |
|
25 |
|
26 |
def model_init(params):
|
@@ -39,7 +38,6 @@ def model_init(params):
|
|
39 |
include_policy_loss = params.get("include_policy_loss", True)
|
40 |
gumbel_detach = params.get("gumbel_detach", True)
|
41 |
merged_talk_heads = params.get("merged_talk_heads", True)
|
42 |
-
gradient_accumulation_steps = params.get("gradient_accumulation_steps", global_gradient_accumulation_steps)
|
43 |
residual_think_head = params.get("residual_think_head", False)
|
44 |
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
45 |
|
@@ -48,7 +46,7 @@ def model_init(params):
|
|
48 |
print("Loading model")
|
49 |
model = AutoModelForCausalLM.from_pretrained(
|
50 |
model_id,
|
51 |
-
torch_dtype=torch.
|
52 |
max_thoughts=n_ahead + n_ahead_talk + 1,
|
53 |
merged_talk_heads=merged_talk_heads,
|
54 |
merged_lm_and_talk_heads=False,
|
@@ -61,10 +59,12 @@ def model_init(params):
|
|
61 |
use_weighted_talk_head=True,
|
62 |
trust_remote_code=True,
|
63 |
device_map="auto",
|
|
|
|
|
64 |
)
|
65 |
print("Loaded model")
|
66 |
|
67 |
-
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id,
|
68 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
69 |
|
70 |
special_tokens_to_add = []
|
@@ -76,6 +76,10 @@ def model_init(params):
|
|
76 |
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
77 |
model.resize_token_embeddings(len(tokenizer))
|
78 |
model.tokenizer = tokenizer
|
|
|
|
|
|
|
|
|
79 |
model.gumbel_detach = gumbel_detach
|
80 |
model.include_policy_loss = include_policy_loss
|
81 |
model.use_end_thought_token = use_end_thought_token
|
@@ -83,40 +87,40 @@ def model_init(params):
|
|
83 |
model.n_ahead = n_ahead
|
84 |
model.n_ahead_talk = n_ahead_talk
|
85 |
model.n_passes = n_passes
|
86 |
-
model.n_tokens_print = gradient_accumulation_steps
|
87 |
-
model.gradient_accumulation_steps = gradient_accumulation_steps
|
88 |
model.residual_think_head = residual_think_head
|
89 |
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
|
90 |
model.gumbel_temperature = gumbel_temperature
|
91 |
model.original_mode = original
|
92 |
model.config_params = params
|
93 |
model.run_start = int(time.time())
|
94 |
-
model.kill_after = 100
|
95 |
model.train()
|
96 |
return model
|
97 |
|
98 |
-
|
99 |
-
batch_size = full_batch_size // n_passes_global
|
100 |
-
global_gradient_accumulation_steps = full_batch_size // batch_size
|
101 |
run_id = int(time.time())
|
102 |
training_args = TrainingArguments(
|
103 |
output_dir="./out",
|
104 |
-
num_train_epochs=
|
105 |
per_device_train_batch_size=1,
|
106 |
gradient_checkpointing=False,
|
107 |
-
gradient_accumulation_steps=
|
108 |
-
optim="
|
109 |
logging_steps=1,
|
110 |
save_strategy="steps",
|
111 |
save_steps=300,
|
112 |
bf16=True,
|
113 |
tf32=False,
|
|
|
|
|
|
|
114 |
# auto_find_batch_size=True
|
115 |
-
learning_rate=
|
116 |
-
max_grad_norm=
|
117 |
-
warmup_steps=
|
118 |
lr_scheduler_type="cosine",
|
119 |
push_to_hub=False,
|
|
|
|
|
120 |
)
|
121 |
|
122 |
# peft_config = LoraConfig(
|
@@ -131,14 +135,16 @@ training_args = TrainingArguments(
|
|
131 |
|
132 |
torch.autograd.set_detect_anomaly(True)
|
133 |
model = model_init(None) # Initialize the model
|
134 |
-
tokenizer = model.tokenizer
|
135 |
|
|
|
|
|
136 |
trainer = SFTTrainer(
|
137 |
args=training_args,
|
138 |
train_dataset=dataset,
|
139 |
model=model,
|
140 |
# peft_config=peft_config,
|
141 |
tokenizer=tokenizer,
|
|
|
142 |
)
|
143 |
|
144 |
-
trainer.train()
|
|
|
7 |
from trl import SFTTrainer
|
8 |
from peft import LoraConfig
|
9 |
|
10 |
+
|
11 |
import time
|
12 |
random_seed = 42
|
13 |
torch.manual_seed(random_seed)
|
14 |
random.seed(random_seed)
|
15 |
|
16 |
+
dataset = load_dataset("Crystalcareai/Self-Discover-MM-Instruct-openai", split="train_sft")
|
17 |
|
18 |
+
n_ahead_talk_global = 3
|
19 |
n_passes_global = 2
|
20 |
n_ahead_global = 2
|
21 |
n_examples = 0
|
22 |
+
|
|
|
|
|
23 |
|
24 |
|
25 |
def model_init(params):
|
|
|
38 |
include_policy_loss = params.get("include_policy_loss", True)
|
39 |
gumbel_detach = params.get("gumbel_detach", True)
|
40 |
merged_talk_heads = params.get("merged_talk_heads", True)
|
|
|
41 |
residual_think_head = params.get("residual_think_head", False)
|
42 |
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
43 |
|
|
|
46 |
print("Loading model")
|
47 |
model = AutoModelForCausalLM.from_pretrained(
|
48 |
model_id,
|
49 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
50 |
max_thoughts=n_ahead + n_ahead_talk + 1,
|
51 |
merged_talk_heads=merged_talk_heads,
|
52 |
merged_lm_and_talk_heads=False,
|
|
|
59 |
use_weighted_talk_head=True,
|
60 |
trust_remote_code=True,
|
61 |
device_map="auto",
|
62 |
+
# load_in_4bit=True,
|
63 |
+
# attn_implementation="flash_attention_2",
|
64 |
)
|
65 |
print("Loaded model")
|
66 |
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id,truncation=True,padding="left")
|
68 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
69 |
|
70 |
special_tokens_to_add = []
|
|
|
76 |
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
77 |
model.resize_token_embeddings(len(tokenizer))
|
78 |
model.tokenizer = tokenizer
|
79 |
+
for name, module in model.named_modules():
|
80 |
+
if "embed" in name:
|
81 |
+
print(module, flush=True)
|
82 |
+
|
83 |
model.gumbel_detach = gumbel_detach
|
84 |
model.include_policy_loss = include_policy_loss
|
85 |
model.use_end_thought_token = use_end_thought_token
|
|
|
87 |
model.n_ahead = n_ahead
|
88 |
model.n_ahead_talk = n_ahead_talk
|
89 |
model.n_passes = n_passes
|
|
|
|
|
90 |
model.residual_think_head = residual_think_head
|
91 |
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
|
92 |
model.gumbel_temperature = gumbel_temperature
|
93 |
model.original_mode = original
|
94 |
model.config_params = params
|
95 |
model.run_start = int(time.time())
|
|
|
96 |
model.train()
|
97 |
return model
|
98 |
|
99 |
+
max_seq_length = 1024
|
|
|
|
|
100 |
run_id = int(time.time())
|
101 |
training_args = TrainingArguments(
|
102 |
output_dir="./out",
|
103 |
+
num_train_epochs=1.5,
|
104 |
per_device_train_batch_size=1,
|
105 |
gradient_checkpointing=False,
|
106 |
+
gradient_accumulation_steps=8,
|
107 |
+
optim="lion_32bit",
|
108 |
logging_steps=1,
|
109 |
save_strategy="steps",
|
110 |
save_steps=300,
|
111 |
bf16=True,
|
112 |
tf32=False,
|
113 |
+
# epsilson=1e-05,
|
114 |
+
# beta1=0.9,
|
115 |
+
# beta2=0.95,
|
116 |
# auto_find_batch_size=True
|
117 |
+
learning_rate=3e-07,
|
118 |
+
max_grad_norm=0.3, # Gradient clipping with a maximum gradient norm of 0.3
|
119 |
+
warmup_steps=10,
|
120 |
lr_scheduler_type="cosine",
|
121 |
push_to_hub=False,
|
122 |
+
report_to="wandb"
|
123 |
+
|
124 |
)
|
125 |
|
126 |
# peft_config = LoraConfig(
|
|
|
135 |
|
136 |
torch.autograd.set_detect_anomaly(True)
|
137 |
model = model_init(None) # Initialize the model
|
|
|
138 |
|
139 |
+
tokenizer = model.tokenizer
|
140 |
+
|
141 |
trainer = SFTTrainer(
|
142 |
args=training_args,
|
143 |
train_dataset=dataset,
|
144 |
model=model,
|
145 |
# peft_config=peft_config,
|
146 |
tokenizer=tokenizer,
|
147 |
+
max_seq_length=max_seq_length,
|
148 |
)
|
149 |
|
150 |
+
trainer.train()
|