Crystalcareai commited on
Commit
8bac0a3
·
verified ·
1 Parent(s): 7073ab6

Update generate.py

Browse files
Files changed (1) hide show
  1. generate.py +110 -84
generate.py CHANGED
@@ -8,41 +8,84 @@ from transformers.generation.utils import (
8
 
9
  logger = logging.get_logger(__name__)
10
 
11
- @torch.no_grad()
12
- def custom_generate(model, input_ids, attention_mask, max_new_tokens, streamer, **kwargs):
13
- finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=input_ids.device)
14
- for cur_token_idx in range(max_new_tokens):
15
- # Sample the next token
16
- new_ids = model(
17
- input_ids[~finished_generating],
18
- attention_mask=attention_mask[~finished_generating]
19
- )['logits']
20
- # Mask out the start and end thought tokens so we don't accidentally sample them
21
- new_ids[:, :, model.tokenizer.vocab_size:] = -float("inf")
22
- for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
23
- # Find the index of the last token that is not padding
24
- base_answer_ids = input_ids[answer_idx]
25
- new_answer_ids = new_ids[list_idx]
26
- last_token_idx = (base_answer_ids != model.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
27
- new_ids_sampled = torch.multinomial(
28
- torch.nn.functional.softmax(new_answer_ids[last_token_idx] / kwargs.get("temperature", 1.0), dim=-1), 1)
29
- # Assign the new id to the last token
30
- if last_token_idx + 1 >= len(base_answer_ids):
31
- # Add padding everywhere
32
- new_padding = torch.full((len(input_ids), 1), model.tokenizer.pad_token_id, dtype=torch.long,
33
- device=input_ids.device)
34
- input_ids = torch.cat([input_ids, new_padding], dim=-1)
35
- attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
36
- attention_mask[answer_idx, last_token_idx + 1] = 1
37
- input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled
38
- if new_ids_sampled == model.tokenizer.eos_token_id or new_ids_sampled == model.tokenizer.bos_token_id or new_ids_sampled == model.tokenizer.pad_token_id:
39
- finished_generating[answer_idx] = 1
40
- # Check if the end token is generated
41
- if new_ids_sampled == model.tokenizer.convert_tokens_to_ids("<|/assistant|>"):
42
- finished_generating[answer_idx] = 1
43
- if finished_generating.all():
44
- break
45
- streamer.put(new_ids_sampled)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  return input_ids, attention_mask
47
 
48
  def generate(
@@ -78,57 +121,40 @@ def generate(
78
  forced_eos_token_id=None,
79
  remove_invalid_values=None,
80
  synced_gpus=None,
81
- n_ahead=4,
82
- n_ahead_talk=4,
83
- merged_talk_heads=True,
84
- merged_lm_and_talk_heads=False,
85
- merged_lm_and_think_heads=True,
86
- use_concat_talk_head=True,
87
- use_shallow_think=True,
88
- use_shallow_talk=False,
89
- use_complex_think_head=False,
90
- use_complex_talk_head=True,
91
- use_weighted_talk_head=True,
92
- trust_remote_code=True,
93
- torch_dtype=torch.bfloat16,
94
  **model_kwargs,
95
  ):
96
- # Set model attributes
97
- self.max_thoughts = n_ahead + n_ahead_talk + 1
98
- self.merged_talk_heads = merged_talk_heads
99
- self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
100
- self.merged_lm_and_think_heads = merged_lm_and_think_heads
101
- self.use_concat_talk_head = use_concat_talk_head
102
- self.use_shallow_think = use_shallow_think
103
- self.use_shallow_talk = use_shallow_talk
104
- self.use_complex_think_head = use_complex_think_head
105
- self.use_complex_talk_head = use_complex_talk_head
106
- self.use_weighted_talk_head = use_weighted_talk_head
107
-
108
- # Set model properties
109
- self.use_end_thought_token = True
110
- self.use_start_thought_token = True
111
- self.wandb_enabled = True
112
- self.n_ahead = n_ahead
113
- self.n_passes = 1
114
- self.eval_mode = True
115
- self.first_run = False
116
- self.kill_after = 100
117
- self.rm_initialized = True
118
- self.original_mode = False
119
-
120
- # Initialize a TextStreamer for streaming the generated text
121
- streamer = TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
122
-
123
- # Generate using the custom generate function
124
- input_ids, attention_mask = custom_generate(
125
  self,
126
- input_ids,
127
- attention_mask,
128
- max_length,
129
- streamer,
 
 
 
130
  temperature=temperature,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  **model_kwargs,
132
- )
133
-
134
- return input_ids, attention_mask
 
8
 
9
  logger = logging.get_logger(__name__)
10
 
11
+ def custom_generate(
12
+ self,
13
+ input_ids,
14
+ attention_mask=None,
15
+ max_length=None,
16
+ min_length=None,
17
+ do_sample=None,
18
+ early_stopping=None,
19
+ num_beams=None,
20
+ temperature=1.0,
21
+ top_k=None,
22
+ top_p=None,
23
+ repetition_penalty=None,
24
+ bad_words_ids=None,
25
+ bos_token_id=None,
26
+ pad_token_id=None,
27
+ eos_token_id=None,
28
+ length_penalty=None,
29
+ no_repeat_ngram_size=None,
30
+ num_return_sequences=None,
31
+ decoder_start_token_id=None,
32
+ use_cache=None,
33
+ num_beam_groups=None,
34
+ diversity_penalty=None,
35
+ prefix_allowed_tokens_fn=None,
36
+ output_attentions=None,
37
+ output_hidden_states=None,
38
+ output_scores=None,
39
+ return_dict_in_generate=None,
40
+ forced_bos_token_id=None,
41
+ forced_eos_token_id=None,
42
+ remove_invalid_values=None,
43
+ synced_gpus=None,
44
+ **kwargs,
45
+ ):
46
+ with torch.no_grad():
47
+ finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=input_ids.device)
48
+
49
+ while not finished_generating.all() and input_ids.shape[1] < max_length:
50
+ # Sample the next token
51
+ new_ids = self(
52
+ input_ids[~finished_generating],
53
+ attention_mask=attention_mask[~finished_generating] if attention_mask is not None else None,
54
+ **kwargs
55
+ )['logits']
56
+
57
+ # Mask out the start and end thought tokens so we don't accidentally sample them
58
+ new_ids[:, :, self.tokenizer.vocab_size:] = -float("inf")
59
+
60
+ for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
61
+ # Find the index of the last token that is not padding
62
+ base_answer_ids = input_ids[answer_idx]
63
+ new_answer_ids = new_ids[list_idx]
64
+ last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
65
+
66
+ new_ids_sampled = torch.multinomial(
67
+ torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temperature, dim=-1), 1)
68
+
69
+ # Assign the new id to the last token
70
+ if last_token_idx + 1 >= len(base_answer_ids):
71
+ # Add padding everywhere
72
+ new_padding = torch.full((len(input_ids), 1), self.tokenizer.pad_token_id, dtype=torch.long,
73
+ device=input_ids.device)
74
+ input_ids = torch.cat([input_ids, new_padding], dim=-1)
75
+ if attention_mask is not None:
76
+ attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
77
+
78
+ if attention_mask is not None:
79
+ attention_mask[answer_idx, last_token_idx + 1] = 1
80
+ input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled
81
+
82
+ if new_ids_sampled == self.tokenizer.eos_token_id or new_ids_sampled == self.tokenizer.bos_token_id or new_ids_sampled == self.tokenizer.pad_token_id:
83
+ finished_generating[answer_idx] = 1
84
+
85
+ # Check if the end token is generated
86
+ if new_ids_sampled == self.tokenizer.convert_tokens_to_ids("<|/assistant|>"):
87
+ finished_generating[answer_idx] = 1
88
+
89
  return input_ids, attention_mask
90
 
91
  def generate(
 
121
  forced_eos_token_id=None,
122
  remove_invalid_values=None,
123
  synced_gpus=None,
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  **model_kwargs,
125
  ):
126
+ return custom_generate(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  self,
128
+ input_ids=input_ids,
129
+ attention_mask=attention_mask,
130
+ max_length=max_length,
131
+ min_length=min_length,
132
+ do_sample=do_sample,
133
+ early_stopping=early_stopping,
134
+ num_beams=num_beams,
135
  temperature=temperature,
136
+ top_k=top_k,
137
+ top_p=top_p,
138
+ repetition_penalty=repetition_penalty,
139
+ bad_words_ids=bad_words_ids,
140
+ bos_token_id=bos_token_id,
141
+ pad_token_id=pad_token_id,
142
+ eos_token_id=eos_token_id,
143
+ length_penalty=length_penalty,
144
+ no_repeat_ngram_size=no_repeat_ngram_size,
145
+ num_return_sequences=num_return_sequences,
146
+ decoder_start_token_id=decoder_start_token_id,
147
+ use_cache=use_cache,
148
+ num_beam_groups=num_beam_groups,
149
+ diversity_penalty=diversity_penalty,
150
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
151
+ output_attentions=output_attentions,
152
+ output_hidden_states=output_hidden_states,
153
+ output_scores=output_scores,
154
+ return_dict_in_generate=return_dict_in_generate,
155
+ forced_bos_token_id=forced_bos_token_id,
156
+ forced_eos_token_id=forced_eos_token_id,
157
+ remove_invalid_values=remove_invalid_values,
158
+ synced_gpus=synced_gpus,
159
  **model_kwargs,
160
+ )