Update modeling_quiet.py
Browse files- modeling_quiet.py +29 -52
modeling_quiet.py
CHANGED
@@ -2169,59 +2169,36 @@ class QuietForCausalLM(QuietPreTrainedModel, GenerationMixin):
|
|
2169 |
def prepare_inputs_for_generation(
|
2170 |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
2171 |
):
|
2172 |
-
|
2173 |
-
|
2174 |
-
|
2175 |
-
|
2176 |
-
|
2177 |
-
max_cache_length = past_key_values.get_max_length()
|
2178 |
-
else:
|
2179 |
-
cache_length = past_length = past_key_values[0][0].shape[2]
|
2180 |
-
max_cache_length = None
|
2181 |
-
|
2182 |
-
# Keep only the unprocessed tokens:
|
2183 |
-
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
2184 |
-
# some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as
|
2185 |
-
# input)
|
2186 |
-
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
2187 |
-
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
2188 |
-
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
2189 |
-
# input_ids based on the past_length.
|
2190 |
-
elif past_length < input_ids.shape[1]:
|
2191 |
-
input_ids = input_ids[:, past_length:]
|
2192 |
-
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
2193 |
-
|
2194 |
-
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
2195 |
-
if (
|
2196 |
-
max_cache_length is not None
|
2197 |
-
and attention_mask is not None
|
2198 |
-
and cache_length + input_ids.shape[1] > max_cache_length
|
2199 |
-
):
|
2200 |
-
attention_mask = attention_mask[:, -max_cache_length:]
|
2201 |
-
|
2202 |
-
position_ids = kwargs.get("position_ids", None)
|
2203 |
-
if attention_mask is not None and position_ids is None:
|
2204 |
-
# create position_ids on the fly for batch generation
|
2205 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
2206 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
2207 |
-
if past_key_values:
|
2208 |
-
position_ids = position_ids[:, -input_ids.shape[1] :]
|
2209 |
-
|
2210 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
2211 |
-
if inputs_embeds is not None and past_key_values is None:
|
2212 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
2213 |
else:
|
2214 |
-
|
2215 |
-
|
2216 |
-
|
2217 |
-
|
2218 |
-
|
2219 |
-
|
2220 |
-
|
2221 |
-
|
2222 |
-
|
2223 |
-
|
2224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2225 |
|
2226 |
@staticmethod
|
2227 |
def _reorder_cache(past_key_values, beam_idx):
|
|
|
2169 |
def prepare_inputs_for_generation(
|
2170 |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
2171 |
):
|
2172 |
+
if past_key_values:
|
2173 |
+
input_ids = input_ids[:, -1:]
|
2174 |
+
|
2175 |
+
if attention_mask is None:
|
2176 |
+
attention_mask = torch.ones_like(input_ids)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2177 |
else:
|
2178 |
+
attention_mask = attention_mask[:, -input_ids.shape[1]:] # Adjust the attention mask size
|
2179 |
+
|
2180 |
+
if self.use_start_thought_token:
|
2181 |
+
start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
|
2182 |
+
input_ids = torch.cat(
|
2183 |
+
[input_ids, torch.tensor([[start_thought_token_id]] * input_ids.shape[0], device=input_ids.device)],
|
2184 |
+
dim=-1
|
2185 |
+
)
|
2186 |
+
attention_mask = torch.cat(
|
2187 |
+
[attention_mask, torch.ones((input_ids.shape[0], 1), device=attention_mask.device)],
|
2188 |
+
dim=-1
|
2189 |
+
)
|
2190 |
+
|
2191 |
+
# Expand the attention mask to the correct shape
|
2192 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
2193 |
+
attention_mask = attention_mask.expand(input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])
|
2194 |
+
|
2195 |
+
return {
|
2196 |
+
"input_ids": input_ids,
|
2197 |
+
"past_key_values": past_key_values,
|
2198 |
+
"use_cache": kwargs.get("use_cache"),
|
2199 |
+
"attention_mask": attention_mask,
|
2200 |
+
"inputs_embeds": inputs_embeds,
|
2201 |
+
}
|
2202 |
|
2203 |
@staticmethod
|
2204 |
def _reorder_cache(past_key_values, beam_idx):
|