Crystalcareai
commited on
Update modeling_quiet.py
Browse files- modeling_quiet.py +110 -39
modeling_quiet.py
CHANGED
@@ -1307,47 +1307,118 @@ class QuietForCausalLM(QuietPreTrainedModel, GenerationMixin):
|
|
1307 |
nn.init.constant_(module.bias, 0)
|
1308 |
elif isinstance(module, nn.Embedding):
|
1309 |
nn.init.xavier_uniform_(module.weight)
|
1310 |
-
|
1311 |
@torch.no_grad()
|
1312 |
-
def
|
1313 |
-
|
1314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1315 |
|
1316 |
-
|
1317 |
-
|
1318 |
-
|
1319 |
-
|
1320 |
-
|
1321 |
-
|
1322 |
-
|
1323 |
-
|
1324 |
-
|
1325 |
-
|
1326 |
-
|
1327 |
-
|
1328 |
-
|
1329 |
-
|
1330 |
-
|
1331 |
-
|
1332 |
-
|
1333 |
-
|
1334 |
-
|
1335 |
-
|
1336 |
-
|
1337 |
-
|
1338 |
-
|
1339 |
-
|
1340 |
-
|
1341 |
-
|
1342 |
-
|
1343 |
-
|
1344 |
-
|
1345 |
-
|
1346 |
-
|
1347 |
-
|
1348 |
-
|
1349 |
-
|
1350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1351 |
|
1352 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1353 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
|
1307 |
nn.init.constant_(module.bias, 0)
|
1308 |
elif isinstance(module, nn.Embedding):
|
1309 |
nn.init.xavier_uniform_(module.weight)
|
1310 |
+
|
1311 |
@torch.no_grad()
|
1312 |
+
def infer(
|
1313 |
+
self,
|
1314 |
+
input_ids: torch.LongTensor,
|
1315 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1316 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1317 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1318 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1319 |
+
use_cache: Optional[bool] = None,
|
1320 |
+
output_attentions: Optional[bool] = None,
|
1321 |
+
output_hidden_states: Optional[bool] = None,
|
1322 |
+
return_dict: Optional[bool] = None,
|
1323 |
+
):
|
1324 |
+
batch_size, seq_len = input_ids.shape
|
1325 |
+
|
1326 |
+
# Save the original input_ids and attention_mask for later use
|
1327 |
+
original_input_ids = input_ids.clone()
|
1328 |
+
original_attention_mask = attention_mask.clone() if attention_mask is not None else None
|
1329 |
+
|
1330 |
+
# Append the start thought token to the input sequence
|
1331 |
+
start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
|
1332 |
+
input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
|
1333 |
+
seq_len += 1
|
1334 |
+
|
1335 |
+
# Update the attention mask
|
1336 |
+
if attention_mask is not None:
|
1337 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
1338 |
+
|
1339 |
+
# Generate the continuation
|
1340 |
+
continuation_length = self.n_ahead - 2
|
1341 |
+
new_key_values = past_key_values
|
1342 |
|
1343 |
+
start_time = time.time()
|
1344 |
+
for continuation_idx in range(continuation_length):
|
1345 |
+
outputs = self.model(
|
1346 |
+
input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device),
|
1347 |
+
attention_mask=attention_mask,
|
1348 |
+
position_ids=position_ids,
|
1349 |
+
past_key_values=new_key_values,
|
1350 |
+
inputs_embeds=inputs_embeds,
|
1351 |
+
use_cache=True,
|
1352 |
+
output_attentions=output_attentions,
|
1353 |
+
output_hidden_states=output_hidden_states,
|
1354 |
+
return_dict=return_dict,
|
1355 |
+
)
|
1356 |
+
new_key_values = outputs.past_key_values
|
1357 |
+
|
1358 |
+
hidden_states = outputs[0]
|
1359 |
+
|
1360 |
+
logits = self.lm_head(hidden_states)
|
1361 |
+
logits = logits[:, -1, :] # Only consider the last token
|
1362 |
+
|
1363 |
+
# Apply Gumbel-Softmax to the logits
|
1364 |
+
next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1)
|
1365 |
+
next_token_id = torch.argmax(next_token_logits, dim=-1)
|
1366 |
+
|
1367 |
+
# Append the generated token to the input sequence
|
1368 |
+
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1)
|
1369 |
+
seq_len += 1
|
1370 |
+
|
1371 |
+
# Update the attention mask
|
1372 |
+
if attention_mask is not None:
|
1373 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
1374 |
+
|
1375 |
+
# Append the end thought token to the input sequence
|
1376 |
+
end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
|
1377 |
+
input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
|
1378 |
+
seq_len += 1
|
1379 |
+
|
1380 |
+
# Update the attention mask
|
1381 |
+
if attention_mask is not None:
|
1382 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
1383 |
+
|
1384 |
+
# Get the hidden states before and after the thought
|
1385 |
+
outputs_before = self.model(
|
1386 |
+
input_ids=original_input_ids,
|
1387 |
+
attention_mask=original_attention_mask,
|
1388 |
+
position_ids=position_ids,
|
1389 |
+
past_key_values=past_key_values,
|
1390 |
+
inputs_embeds=inputs_embeds,
|
1391 |
+
use_cache=use_cache,
|
1392 |
+
output_attentions=output_attentions,
|
1393 |
+
output_hidden_states=output_hidden_states,
|
1394 |
+
return_dict=return_dict,
|
1395 |
+
)
|
1396 |
+
hidden_states_before = outputs_before[0][:, -1:, :]
|
1397 |
+
|
1398 |
+
# two new tokens: last continuation token and end thought token
|
1399 |
+
outputs_after = self.model(
|
1400 |
+
input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1),
|
1401 |
+
attention_mask=attention_mask,
|
1402 |
+
position_ids=position_ids,
|
1403 |
+
past_key_values=new_key_values,
|
1404 |
+
inputs_embeds=inputs_embeds,
|
1405 |
+
use_cache=use_cache,
|
1406 |
+
output_attentions=output_attentions,
|
1407 |
+
output_hidden_states=output_hidden_states,
|
1408 |
+
return_dict=return_dict,
|
1409 |
+
)
|
1410 |
+
hidden_states_after = outputs_after[0][:, -1:, :]
|
1411 |
+
|
1412 |
+
# Apply the talk head to get the mixing weight
|
1413 |
+
mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1))
|
1414 |
+
|
1415 |
+
# Apply the mixing weight to the hidden states
|
1416 |
+
mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after
|
1417 |
+
|
1418 |
+
# Apply the language model head to get the final logits
|
1419 |
+
logits = self.lm_head(mixed_hidden_states)
|
1420 |
+
return logits
|
1421 |
+
|
1422 |
|
1423 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1424 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|