Crystalcareai
commited on
Update generate.py
Browse files- generate.py +17 -15
generate.py
CHANGED
@@ -1,12 +1,7 @@
|
|
1 |
import torch
|
2 |
-
from transformers.generation.utils import
|
3 |
-
GenerationMixin,
|
4 |
-
validate_stopping_criteria,
|
5 |
-
StoppingCriteriaList,
|
6 |
-
)
|
7 |
from transformers import TextStreamer
|
8 |
|
9 |
-
|
10 |
def custom_generate(
|
11 |
self,
|
12 |
input_ids,
|
@@ -72,13 +67,14 @@ def custom_generate(
|
|
72 |
last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
73 |
|
74 |
new_ids_sampled = torch.multinomial(
|
75 |
-
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temperature, dim=-1), 1
|
|
|
76 |
|
77 |
# Assign the new id to the last token
|
78 |
if last_token_idx + 1 >= len(base_answer_ids):
|
79 |
# Add padding everywhere
|
80 |
new_padding = torch.full((batch_size, 1), self.tokenizer.pad_token_id, dtype=torch.long,
|
81 |
-
|
82 |
input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
83 |
if attention_mask is not None:
|
84 |
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
@@ -94,15 +90,20 @@ def custom_generate(
|
|
94 |
# Check if the end token is generated
|
95 |
if new_ids_sampled == self.tokenizer.convert_tokens_to_ids("</s>"):
|
96 |
finished_generating[answer_idx] = 1
|
97 |
-
|
98 |
if finished_generating.all():
|
99 |
break
|
100 |
|
101 |
if streamer is not None:
|
102 |
streamer.put(new_ids_sampled)
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
|
|
|
106 |
|
107 |
def generate(
|
108 |
self,
|
@@ -153,10 +154,9 @@ def generate(
|
|
153 |
torch_dtype=torch.bfloat16,
|
154 |
**model_kwargs,
|
155 |
):
|
156 |
-
|
157 |
if max_new_tokens is None:
|
158 |
-
max_new_tokens = 128
|
159 |
-
|
160 |
# Set model attributes
|
161 |
self.max_thoughts = n_ahead + n_ahead_talk + 1
|
162 |
self.merged_talk_heads = merged_talk_heads
|
@@ -190,7 +190,7 @@ def generate(
|
|
190 |
|
191 |
generated_token_ids = custom_generate(
|
192 |
self,
|
193 |
-
input_ids=input_ids,
|
194 |
attention_mask=attention_mask,
|
195 |
max_new_tokens=max_new_tokens,
|
196 |
min_length=min_length,
|
@@ -225,4 +225,6 @@ def generate(
|
|
225 |
**model_kwargs,
|
226 |
)
|
227 |
|
228 |
-
return
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers.generation.utils import GenerationMixin, validate_stopping_criteria, StoppingCriteriaList
|
|
|
|
|
|
|
|
|
3 |
from transformers import TextStreamer
|
4 |
|
|
|
5 |
def custom_generate(
|
6 |
self,
|
7 |
input_ids,
|
|
|
67 |
last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
68 |
|
69 |
new_ids_sampled = torch.multinomial(
|
70 |
+
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temperature, dim=-1), 1
|
71 |
+
)
|
72 |
|
73 |
# Assign the new id to the last token
|
74 |
if last_token_idx + 1 >= len(base_answer_ids):
|
75 |
# Add padding everywhere
|
76 |
new_padding = torch.full((batch_size, 1), self.tokenizer.pad_token_id, dtype=torch.long,
|
77 |
+
device=device)
|
78 |
input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
79 |
if attention_mask is not None:
|
80 |
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
|
|
90 |
# Check if the end token is generated
|
91 |
if new_ids_sampled == self.tokenizer.convert_tokens_to_ids("</s>"):
|
92 |
finished_generating[answer_idx] = 1
|
93 |
+
|
94 |
if finished_generating.all():
|
95 |
break
|
96 |
|
97 |
if streamer is not None:
|
98 |
streamer.put(new_ids_sampled)
|
99 |
|
100 |
+
# Check if dynamic_temperature argument is present
|
101 |
+
if 'dynamic_temperature' in kwargs and kwargs['dynamic_temperature'] is not None:
|
102 |
+
# Convert generated token IDs to strings and return them
|
103 |
+
generated_text = self.tokenizer.batch_decode(generated_token_ids, skip_special_tokens=True)
|
104 |
+
return generated_text
|
105 |
|
106 |
+
return generated_token_ids
|
107 |
|
108 |
def generate(
|
109 |
self,
|
|
|
154 |
torch_dtype=torch.bfloat16,
|
155 |
**model_kwargs,
|
156 |
):
|
|
|
157 |
if max_new_tokens is None:
|
158 |
+
max_new_tokens = 128
|
159 |
+
|
160 |
# Set model attributes
|
161 |
self.max_thoughts = n_ahead + n_ahead_talk + 1
|
162 |
self.merged_talk_heads = merged_talk_heads
|
|
|
190 |
|
191 |
generated_token_ids = custom_generate(
|
192 |
self,
|
193 |
+
input_ids=input_ids,
|
194 |
attention_mask=attention_mask,
|
195 |
max_new_tokens=max_new_tokens,
|
196 |
min_length=min_length,
|
|
|
225 |
**model_kwargs,
|
226 |
)
|
227 |
|
228 |
+
# Convert generated token IDs to strings and return them
|
229 |
+
generated_text = self.tokenizer.batch_decode(generated_token_ids, skip_special_tokens=True)
|
230 |
+
return generated_text
|