Crystalcareai
commited on
Update modeling_quiet.py
Browse files- modeling_quiet.py +57 -57
modeling_quiet.py
CHANGED
@@ -37,7 +37,7 @@ import transformers
|
|
37 |
|
38 |
from transformers.activations import ACT2FN
|
39 |
from transformers.cache_utils import Cache, DynamicCache
|
40 |
-
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
41 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
42 |
from transformers.modeling_utils import PreTrainedModel
|
43 |
from transformers.utils import (
|
@@ -58,62 +58,62 @@ logger = logging.get_logger(__name__)
|
|
58 |
_CONFIG_FOR_DOC = "QuietConfig"
|
59 |
|
60 |
|
61 |
-
def _prepare_4d_causal_attention_mask_for_sdpa(attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
|
118 |
|
119 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
|
|
37 |
|
38 |
from transformers.activations import ACT2FN
|
39 |
from transformers.cache_utils import Cache, DynamicCache
|
40 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
41 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
42 |
from transformers.modeling_utils import PreTrainedModel
|
43 |
from transformers.utils import (
|
|
|
58 |
_CONFIG_FOR_DOC = "QuietConfig"
|
59 |
|
60 |
|
61 |
+
# def _prepare_4d_causal_attention_mask_for_sdpa(attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
62 |
+
# # Compute the attention mask correctly
|
63 |
+
# bsz, tgt_len = input_shape
|
64 |
+
|
65 |
+
# # Create a 4D attention mask from a 2D tensor mask.
|
66 |
+
# # The shape of the output attention mask is (batch_size, 1, tgt_len, src_len)
|
67 |
+
# # The values are either 0 or 1, where 0 means padding and 1 means non-padding.
|
68 |
+
# combined_attention_mask = None
|
69 |
+
# if attention_mask is not None:
|
70 |
+
# # What if attention_mask is not None and has a shape of (batch_size, 1, tgt_len, src_len)
|
71 |
+
# # In this case, we can just use it directly.
|
72 |
+
# if attention_mask.dim() == 4:
|
73 |
+
# combined_attention_mask = attention_mask
|
74 |
+
# # What if attention_mask is not None and has a shape of (batch_size, 1, tgt_len)
|
75 |
+
# # In this case, we need to expand it to (batch_size, 1, tgt_len, src_len)
|
76 |
+
# elif attention_mask.dim() == 3:
|
77 |
+
# expanded_attn_mask = attention_mask[:, None, :, :]
|
78 |
+
# combined_attention_mask = expanded_attn_mask
|
79 |
+
# # What if attention_mask is not None and has a shape of (batch_size, tgt_len)
|
80 |
+
# # In this case, we need to expand it to (batch_size, 1, tgt_len, src_len)
|
81 |
+
# elif attention_mask.dim() == 2:
|
82 |
+
# # Provided a padding mask of dimensions [batch_size, seq_length]
|
83 |
+
# # - if the model is a decoder, apply a causal mask in addition to the padding mask
|
84 |
+
# # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
85 |
+
# if past_key_values_length > 0:
|
86 |
+
# attention_mask = attention_mask.to(dtype=torch.long)
|
87 |
+
# attention_mask = attention_mask[:, past_key_values_length:]
|
88 |
+
# expanded_attn_mask = attention_mask[:, None, None, :]
|
89 |
+
# combined_attention_mask = expanded_attn_mask
|
90 |
+
# else:
|
91 |
+
# raise ValueError(
|
92 |
+
# "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
93 |
+
# input_shape, attention_mask.shape
|
94 |
+
# )
|
95 |
+
# )
|
96 |
+
|
97 |
+
# # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
98 |
+
# # masked positions, this operation will create a tensor which is 0.0 for
|
99 |
+
# # positions we want to attend and -10000.0 for masked positions.
|
100 |
+
# # Since we are adding it to the raw scores before the softmax, this is
|
101 |
+
# # effectively the same as removing these entirely.
|
102 |
+
# if combined_attention_mask is not None:
|
103 |
+
# # Ensure the attention mask values are within a reasonable range
|
104 |
+
# combined_attention_mask = combined_attention_mask.clamp(min=0, max=1)
|
105 |
+
|
106 |
+
# # Convert the attention mask to bfloat16
|
107 |
+
# combined_attention_mask = combined_attention_mask.to(torch.bfloat16)
|
108 |
+
|
109 |
+
# # Normalize the attention mask values to be between 0 and 1
|
110 |
+
# combined_attention_mask = (1.0 - combined_attention_mask) * -10000.0
|
111 |
+
# else:
|
112 |
+
# combined_attention_mask = torch.zeros(
|
113 |
+
# (bsz, 1, tgt_len, tgt_len), dtype=torch.bfloat16, device=inputs_embeds.device
|
114 |
+
# )
|
115 |
+
|
116 |
+
# return combined_attention_mask
|
117 |
|
118 |
|
119 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|