Crystalcareai
commited on
Upload 3 files
Browse files- config.json +14 -4
- configuration_quiet.py +26 -5
- modeling_quiet.py +1050 -107
config.json
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"QuietForCausalLM"
|
4 |
],
|
|
|
5 |
"auto_map": {
|
6 |
"AutoConfig": "configuration_quiet.QuietConfig",
|
7 |
"AutoModel": "modeling_quiet.QuietModel",
|
@@ -14,9 +16,11 @@
|
|
14 |
"initializer_range": 0.02,
|
15 |
"intermediate_size": 14336,
|
16 |
"max_position_embeddings": 32768,
|
|
|
|
|
|
|
|
|
17 |
"model_type": "quiet",
|
18 |
-
"max_thoughts": 3,
|
19 |
-
"thought_length": 10,
|
20 |
"num_attention_heads": 32,
|
21 |
"num_hidden_layers": 32,
|
22 |
"num_key_value_heads": 8,
|
@@ -25,7 +29,13 @@
|
|
25 |
"sliding_window": 4096,
|
26 |
"tie_word_embeddings": false,
|
27 |
"torch_dtype": "bfloat16",
|
28 |
-
"transformers_version": "4.
|
29 |
"use_cache": true,
|
30 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "Crystalcareai/Quiet-Star-Custom",
|
3 |
"architectures": [
|
4 |
"QuietForCausalLM"
|
5 |
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
"auto_map": {
|
8 |
"AutoConfig": "configuration_quiet.QuietConfig",
|
9 |
"AutoModel": "modeling_quiet.QuietModel",
|
|
|
16 |
"initializer_range": 0.02,
|
17 |
"intermediate_size": 14336,
|
18 |
"max_position_embeddings": 32768,
|
19 |
+
"max_thoughts": 10,
|
20 |
+
"merged_lm_and_talk_heads": false,
|
21 |
+
"merged_lm_and_think_heads": true,
|
22 |
+
"merged_talk_heads": true,
|
23 |
"model_type": "quiet",
|
|
|
|
|
24 |
"num_attention_heads": 32,
|
25 |
"num_hidden_layers": 32,
|
26 |
"num_key_value_heads": 8,
|
|
|
29 |
"sliding_window": 4096,
|
30 |
"tie_word_embeddings": false,
|
31 |
"torch_dtype": "bfloat16",
|
32 |
+
"transformers_version": "4.37.0.dev0",
|
33 |
"use_cache": true,
|
34 |
+
"use_complex_talk_head": true,
|
35 |
+
"use_complex_think_head": false,
|
36 |
+
"use_concat_talk_head": true,
|
37 |
+
"use_shallow_talk": false,
|
38 |
+
"use_shallow_think": true,
|
39 |
+
"use_weighted_talk_head": true,
|
40 |
+
"vocab_size": 32002
|
41 |
}
|
configuration_quiet.py
CHANGED
@@ -20,6 +20,11 @@ from transformers.utils import logging
|
|
20 |
|
21 |
logger = logging.get_logger(__name__)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
class QuietConfig(PretrainedConfig):
|
25 |
r"""
|
@@ -111,13 +116,21 @@ class QuietConfig(PretrainedConfig):
|
|
111 |
use_cache=True,
|
112 |
pad_token_id=None,
|
113 |
bos_token_id=1,
|
114 |
-
max_thoughts: int = 3,
|
115 |
-
thought_length: int = 10,
|
116 |
eos_token_id=2,
|
117 |
tie_word_embeddings=False,
|
118 |
rope_theta=10000.0,
|
119 |
sliding_window=4096,
|
120 |
attention_dropout=0.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
**kwargs,
|
122 |
):
|
123 |
self.vocab_size = vocab_size
|
@@ -137,10 +150,18 @@ class QuietConfig(PretrainedConfig):
|
|
137 |
self.initializer_range = initializer_range
|
138 |
self.rms_norm_eps = rms_norm_eps
|
139 |
self.use_cache = use_cache
|
140 |
-
self.max_thoughts = max_thoughts
|
141 |
-
self.thought_length = thought_length
|
142 |
self.rope_theta = rope_theta
|
143 |
self.attention_dropout = attention_dropout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
super().__init__(
|
146 |
pad_token_id=pad_token_id,
|
@@ -148,4 +169,4 @@ class QuietConfig(PretrainedConfig):
|
|
148 |
eos_token_id=eos_token_id,
|
149 |
tie_word_embeddings=tie_word_embeddings,
|
150 |
**kwargs,
|
151 |
-
)
|
|
|
20 |
|
21 |
logger = logging.get_logger(__name__)
|
22 |
|
23 |
+
QUIET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"quietai/Quiet-7B-v0.1": "https://huggingface.co/quietai/Quiet-7B-v0.1/resolve/main/config.json",
|
25 |
+
"quietai/Quiet-7B-Instruct-v0.1": "https://huggingface.co/quietai/Quiet-7B-Instruct-v0.1/resolve/main/config.json",
|
26 |
+
}
|
27 |
+
|
28 |
|
29 |
class QuietConfig(PretrainedConfig):
|
30 |
r"""
|
|
|
116 |
use_cache=True,
|
117 |
pad_token_id=None,
|
118 |
bos_token_id=1,
|
|
|
|
|
119 |
eos_token_id=2,
|
120 |
tie_word_embeddings=False,
|
121 |
rope_theta=10000.0,
|
122 |
sliding_window=4096,
|
123 |
attention_dropout=0.0,
|
124 |
+
max_thoughts=16,
|
125 |
+
merged_talk_heads=True,
|
126 |
+
merged_lm_and_talk_heads=False,
|
127 |
+
merged_lm_and_think_heads=True,
|
128 |
+
use_concat_talk_head=True,
|
129 |
+
use_shallow_think=True,
|
130 |
+
use_shallow_talk=False,
|
131 |
+
use_complex_think_head=False,
|
132 |
+
use_complex_talk_head=True,
|
133 |
+
use_weighted_talk_head=True,
|
134 |
**kwargs,
|
135 |
):
|
136 |
self.vocab_size = vocab_size
|
|
|
150 |
self.initializer_range = initializer_range
|
151 |
self.rms_norm_eps = rms_norm_eps
|
152 |
self.use_cache = use_cache
|
|
|
|
|
153 |
self.rope_theta = rope_theta
|
154 |
self.attention_dropout = attention_dropout
|
155 |
+
self.max_thoughts = max_thoughts
|
156 |
+
self.merged_talk_heads = merged_talk_heads
|
157 |
+
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
|
158 |
+
self.merged_lm_and_think_heads = merged_lm_and_think_heads
|
159 |
+
self.use_concat_talk_head = use_concat_talk_head
|
160 |
+
self.use_shallow_think = use_shallow_think
|
161 |
+
self.use_shallow_talk = use_shallow_talk
|
162 |
+
self.use_complex_think_head = use_complex_think_head
|
163 |
+
self.use_complex_talk_head = use_complex_talk_head
|
164 |
+
self.use_weighted_talk_head = use_weighted_talk_head
|
165 |
|
166 |
super().__init__(
|
167 |
pad_token_id=pad_token_id,
|
|
|
169 |
eos_token_id=eos_token_id,
|
170 |
tie_word_embeddings=tie_word_embeddings,
|
171 |
**kwargs,
|
172 |
+
)
|
modeling_quiet.py
CHANGED
@@ -20,7 +20,20 @@
|
|
20 |
""" PyTorch Quiet model."""
|
21 |
import inspect
|
22 |
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
import warnings
|
|
|
24 |
from typing import List, Optional, Tuple, Union
|
25 |
|
26 |
import torch
|
@@ -56,13 +69,79 @@ logger = logging.get_logger(__name__)
|
|
56 |
|
57 |
_CONFIG_FOR_DOC = "QuietConfig"
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
61 |
def _get_unpad_data(attention_mask):
|
62 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
63 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
64 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
65 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
66 |
return (
|
67 |
indices,
|
68 |
cu_seqlens,
|
@@ -85,11 +164,10 @@ class QuietRMSNorm(nn.Module):
|
|
85 |
hidden_states = hidden_states.to(torch.float32)
|
86 |
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
87 |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
88 |
-
return
|
89 |
|
90 |
|
91 |
-
#
|
92 |
-
# TODO @Arthur no longer copied from LLama after static cache
|
93 |
class QuietRotaryEmbedding(nn.Module):
|
94 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
95 |
super().__init__()
|
@@ -97,7 +175,7 @@ class QuietRotaryEmbedding(nn.Module):
|
|
97 |
self.dim = dim
|
98 |
self.max_position_embeddings = max_position_embeddings
|
99 |
self.base = base
|
100 |
-
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2
|
101 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
102 |
|
103 |
# Build here to make `torch.jit.trace` work.
|
@@ -107,7 +185,7 @@ class QuietRotaryEmbedding(nn.Module):
|
|
107 |
|
108 |
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
109 |
self.max_seq_len_cached = seq_len
|
110 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=
|
111 |
|
112 |
freqs = torch.outer(t, self.inv_freq)
|
113 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
@@ -134,8 +212,7 @@ def rotate_half(x):
|
|
134 |
return torch.cat((-x2, x1), dim=-1)
|
135 |
|
136 |
|
137 |
-
#
|
138 |
-
# TODO @Arthur no longer copied from LLama after static cache
|
139 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
140 |
"""Applies Rotary Position Embedding to the query and key tensors.
|
141 |
|
@@ -204,8 +281,8 @@ class QuietAttention(nn.Module):
|
|
204 |
self.layer_idx = layer_idx
|
205 |
if layer_idx is None:
|
206 |
logger.warning_once(
|
207 |
-
f"Instantiating {self.__class__.__name__} without passing
|
208 |
-
"
|
209 |
"when creating this class."
|
210 |
)
|
211 |
|
@@ -496,7 +573,7 @@ class QuietFlashAttention2(QuietAttention):
|
|
496 |
attention_mask (`torch.Tensor`):
|
497 |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
498 |
position of padding tokens and 1 for the position of non-padding tokens.
|
499 |
-
dropout (`
|
500 |
Attention dropout
|
501 |
softmax_scale (`float`, *optional*):
|
502 |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
@@ -614,8 +691,7 @@ class QuietFlashAttention2(QuietAttention):
|
|
614 |
)
|
615 |
|
616 |
|
617 |
-
#
|
618 |
-
# TODO @Arthur no longer copied from LLama after static cache
|
619 |
class QuietSdpaAttention(QuietAttention):
|
620 |
"""
|
621 |
Quiet attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
@@ -689,14 +765,14 @@ class QuietSdpaAttention(QuietAttention):
|
|
689 |
query_states,
|
690 |
key_states,
|
691 |
value_states,
|
692 |
-
attn_mask=attention_mask,
|
693 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
694 |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
695 |
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
696 |
)
|
697 |
|
698 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
699 |
-
attn_output = attn_output.
|
700 |
|
701 |
attn_output = self.o_proj(attn_output)
|
702 |
|
@@ -762,7 +838,7 @@ class QuietDecoderLayer(nn.Module):
|
|
762 |
output_attentions=output_attentions,
|
763 |
use_cache=use_cache,
|
764 |
)
|
765 |
-
hidden_states = residual + hidden_states
|
766 |
|
767 |
# Fully Connected
|
768 |
residual = hidden_states
|
@@ -928,35 +1004,6 @@ class QuietModel(QuietPreTrainedModel):
|
|
928 |
def set_input_embeddings(self, value):
|
929 |
self.embed_tokens = value
|
930 |
|
931 |
-
def _generate_thoughts(self, hidden_states, max_length):
|
932 |
-
thought_ids = []
|
933 |
-
thought_embeddings = []
|
934 |
-
|
935 |
-
for _ in range(self.config.max_thoughts):
|
936 |
-
thought_id = torch.LongTensor([[self.config.start_token_id]]).to(hidden_states.device)
|
937 |
-
thought_embedding = self.embed_tokens(thought_id)
|
938 |
-
|
939 |
-
for _ in range(max_length):
|
940 |
-
outputs = self.forward(
|
941 |
-
inputs_embeds=thought_embedding,
|
942 |
-
attention_mask=None,
|
943 |
-
use_cache=True,
|
944 |
-
)
|
945 |
-
logits = outputs.logits[:, -1, :]
|
946 |
-
next_token_id = torch.argmax(logits, dim=-1)
|
947 |
-
|
948 |
-
if next_token_id == self.config.end_token_id:
|
949 |
-
break
|
950 |
-
|
951 |
-
thought_id = torch.cat([thought_id, next_token_id.unsqueeze(0)], dim=-1)
|
952 |
-
thought_embedding = torch.cat([thought_embedding, self.embed_tokens(next_token_id.unsqueeze(0))], dim=1)
|
953 |
-
|
954 |
-
thought_ids.append(thought_id.squeeze(0))
|
955 |
-
thought_embeddings.append(thought_embedding.squeeze(0))
|
956 |
-
|
957 |
-
return thought_ids, thought_embeddings
|
958 |
-
|
959 |
-
|
960 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
961 |
def forward(
|
962 |
self,
|
@@ -1027,7 +1074,7 @@ class QuietModel(QuietPreTrainedModel):
|
|
1027 |
if self._attn_implementation == "flash_attention_2":
|
1028 |
# 2d mask is passed through the layers
|
1029 |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1030 |
-
elif self._attn_implementation == "sdpa" and not output_attentions:
|
1031 |
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1032 |
# the manual implementation that requires a 4D causal mask in all cases.
|
1033 |
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
@@ -1036,7 +1083,7 @@ class QuietModel(QuietPreTrainedModel):
|
|
1036 |
inputs_embeds,
|
1037 |
past_key_values_length,
|
1038 |
)
|
1039 |
-
|
1040 |
# 4d mask is passed through the layers
|
1041 |
attention_mask = _prepare_4d_causal_attention_mask(
|
1042 |
attention_mask,
|
@@ -1104,37 +1151,132 @@ class QuietModel(QuietPreTrainedModel):
|
|
1104 |
attentions=all_self_attns,
|
1105 |
)
|
1106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1107 |
|
1108 |
class QuietForCausalLM(QuietPreTrainedModel):
|
|
|
|
|
1109 |
def __init__(self, config):
|
1110 |
super().__init__(config)
|
1111 |
self.model = QuietModel(config)
|
|
|
1112 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1113 |
-
self.mixing_head = nn.Sequential(
|
1114 |
-
nn.Linear(config.hidden_size * 2, config.hidden_size),
|
1115 |
-
nn.ReLU(),
|
1116 |
-
nn.Linear(config.hidden_size, 1),
|
1117 |
-
)
|
1118 |
-
|
1119 |
self.max_thoughts = config.max_thoughts
|
1120 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1121 |
self.use_policy_loss = True
|
|
|
|
|
1122 |
self.remove_negative_rewards = True
|
|
|
1123 |
|
1124 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1125 |
|
1126 |
-
|
1127 |
-
|
1128 |
-
for thought in thoughts:
|
1129 |
-
thought_log_prob = self.lm_head(thought).log_softmax(dim=-1)
|
1130 |
-
thought_log_probs.append(thought_log_prob)
|
1131 |
-
|
1132 |
-
thought_log_probs = torch.stack(thought_log_probs, dim=1) # (batch_size, num_thoughts, seq_length, vocab_size)
|
1133 |
-
thought_probs = torch.exp(thought_log_probs)
|
1134 |
-
|
1135 |
-
policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1))
|
1136 |
-
|
1137 |
-
return policy_loss
|
1138 |
|
1139 |
def get_input_embeddings(self):
|
1140 |
return self.model.embed_tokens
|
@@ -1154,6 +1296,125 @@ class QuietForCausalLM(QuietPreTrainedModel):
|
|
1154 |
def get_decoder(self):
|
1155 |
return self.model
|
1156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1157 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1158 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1159 |
def forward(
|
@@ -1194,6 +1455,16 @@ class QuietForCausalLM(QuietPreTrainedModel):
|
|
1194 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1195 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1196 |
```"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1197 |
|
1198 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1199 |
output_hidden_states = (
|
@@ -1201,58 +1472,730 @@ class QuietForCausalLM(QuietPreTrainedModel):
|
|
1201 |
)
|
1202 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1203 |
|
1204 |
-
|
1205 |
-
|
1206 |
-
input_ids,
|
1207 |
-
attention_mask=attention_mask,
|
1208 |
-
position_ids=position_ids,
|
1209 |
-
past_key_values=past_key_values,
|
1210 |
-
inputs_embeds=inputs_embeds,
|
1211 |
-
use_cache=use_cache,
|
1212 |
-
output_attentions=output_attentions,
|
1213 |
-
output_hidden_states=output_hidden_states,
|
1214 |
-
return_dict=return_dict,
|
1215 |
-
)
|
1216 |
-
|
1217 |
-
hidden_states = outputs.last_hidden_state
|
1218 |
-
base_logits = self.lm_head(hidden_states)
|
1219 |
|
1220 |
-
|
1221 |
-
|
1222 |
-
thought_logits = self.lm_head(thought_hidden_states)
|
1223 |
|
1224 |
-
|
1225 |
-
|
1226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1227 |
|
1228 |
loss = None
|
1229 |
-
|
1230 |
-
|
1231 |
-
|
1232 |
-
|
1233 |
-
|
1234 |
-
|
1235 |
-
|
1236 |
-
|
1237 |
-
|
1238 |
-
|
1239 |
-
|
1240 |
-
|
1241 |
-
|
1242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1243 |
|
1244 |
if not return_dict:
|
1245 |
-
output = (
|
1246 |
-
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1248 |
return CausalLMOutputWithPast(
|
1249 |
-
loss=loss,
|
1250 |
-
logits=
|
1251 |
past_key_values=outputs.past_key_values,
|
1252 |
hidden_states=outputs.hidden_states,
|
1253 |
attentions=outputs.attentions,
|
1254 |
)
|
1255 |
|
|
|
1256 |
def prepare_inputs_for_generation(
|
1257 |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1258 |
):
|
@@ -1268,7 +2211,7 @@ class QuietForCausalLM(QuietPreTrainedModel):
|
|
1268 |
|
1269 |
# Keep only the unprocessed tokens:
|
1270 |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1271 |
-
# some of the inputs are exclusively passed as part of the cache (e.g. when passing
|
1272 |
# input)
|
1273 |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1274 |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
|
|
20 |
""" PyTorch Quiet model."""
|
21 |
import inspect
|
22 |
import math
|
23 |
+
import copy
|
24 |
+
import os
|
25 |
+
import time
|
26 |
+
import pandas as pd
|
27 |
+
import seaborn as sns
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
import wandb
|
30 |
+
from termcolor import colored
|
31 |
+
from tqdm import tqdm
|
32 |
+
import random
|
33 |
+
import numpy as np
|
34 |
+
from matplotlib.colors import LinearSegmentedColormap, LogNorm
|
35 |
import warnings
|
36 |
+
from collections import defaultdict
|
37 |
from typing import List, Optional, Tuple, Union
|
38 |
|
39 |
import torch
|
|
|
69 |
|
70 |
_CONFIG_FOR_DOC = "QuietConfig"
|
71 |
|
72 |
+
from reportlab.pdfgen import canvas
|
73 |
+
from reportlab.lib.pagesizes import letter
|
74 |
+
from reportlab.lib.colors import HexColor
|
75 |
+
|
76 |
+
def save_tokens_with_rewards_to_pdf(input_ids, token_rewards, tokenizer, output_file="text.pdf", eps=0.2, eps2=0.5):
|
77 |
+
c = canvas.Canvas(output_file, pagesize=letter)
|
78 |
+
c.setFont("Courier", 8)
|
79 |
+
x, y = 50, 750
|
80 |
+
previous_text = ""
|
81 |
+
current_text = ""
|
82 |
+
for token_idx, reward in enumerate(token_rewards):
|
83 |
+
current_text = tokenizer.decode(input_ids[: token_idx + 1])
|
84 |
+
if current_text != previous_text:
|
85 |
+
diff_text = current_text[len(previous_text) :]
|
86 |
+
if "\n" in diff_text:
|
87 |
+
lines = diff_text.split("\n")
|
88 |
+
for line_idx, line in enumerate(lines):
|
89 |
+
if line_idx > 0:
|
90 |
+
x = 50
|
91 |
+
y -= 12
|
92 |
+
if abs(reward) < eps:
|
93 |
+
opacity = 0
|
94 |
+
elif abs(reward) > eps2:
|
95 |
+
opacity = 0.8
|
96 |
+
else:
|
97 |
+
opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps)
|
98 |
+
text_width = c.stringWidth(line)
|
99 |
+
if reward > 0:
|
100 |
+
highlight_color = HexColor("#4CCD99")
|
101 |
+
else:
|
102 |
+
highlight_color = HexColor("#FFC700")
|
103 |
+
highlight_color.alpha = opacity
|
104 |
+
c.setFillColor(highlight_color)
|
105 |
+
c.rect(x, y - 2, text_width, 10, fill=True, stroke=False)
|
106 |
+
c.setFillColor(HexColor("#000000"))
|
107 |
+
c.drawString(x, y, line)
|
108 |
+
x += text_width
|
109 |
+
else:
|
110 |
+
if abs(reward) < eps:
|
111 |
+
opacity = 0
|
112 |
+
elif abs(reward) > eps2:
|
113 |
+
opacity = 0.8
|
114 |
+
else:
|
115 |
+
opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps)
|
116 |
+
text_width = c.stringWidth(diff_text)
|
117 |
+
if reward > 0:
|
118 |
+
highlight_color = HexColor("#4CCD99")
|
119 |
+
else:
|
120 |
+
highlight_color = HexColor("#FFC700")
|
121 |
+
highlight_color.alpha = opacity
|
122 |
+
c.setFillColor(highlight_color)
|
123 |
+
c.rect(x, y - 2, text_width, 10, fill=True, stroke=False)
|
124 |
+
c.setFillColor(HexColor("#000000"))
|
125 |
+
c.drawString(x, y, diff_text)
|
126 |
+
x += text_width
|
127 |
+
if x > 550:
|
128 |
+
x = 50
|
129 |
+
y -= 12
|
130 |
+
if y < 50:
|
131 |
+
c.showPage()
|
132 |
+
y = 750
|
133 |
+
x = 50
|
134 |
+
previous_text = current_text
|
135 |
+
c.showPage()
|
136 |
+
c.save()
|
137 |
+
|
138 |
|
139 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
140 |
def _get_unpad_data(attention_mask):
|
141 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
142 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
143 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
144 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
145 |
return (
|
146 |
indices,
|
147 |
cu_seqlens,
|
|
|
164 |
hidden_states = hidden_states.to(torch.float32)
|
165 |
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
166 |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
167 |
+
return hidden_states.to(input_dtype) * self.weight.to(hidden_states.device)
|
168 |
|
169 |
|
170 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Quiet
|
|
|
171 |
class QuietRotaryEmbedding(nn.Module):
|
172 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
173 |
super().__init__()
|
|
|
175 |
self.dim = dim
|
176 |
self.max_position_embeddings = max_position_embeddings
|
177 |
self.base = base
|
178 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
179 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
180 |
|
181 |
# Build here to make `torch.jit.trace` work.
|
|
|
185 |
|
186 |
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
187 |
self.max_seq_len_cached = seq_len
|
188 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
189 |
|
190 |
freqs = torch.outer(t, self.inv_freq)
|
191 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
|
212 |
return torch.cat((-x2, x1), dim=-1)
|
213 |
|
214 |
|
215 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
|
|
216 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
217 |
"""Applies Rotary Position Embedding to the query and key tensors.
|
218 |
|
|
|
281 |
self.layer_idx = layer_idx
|
282 |
if layer_idx is None:
|
283 |
logger.warning_once(
|
284 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
285 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
286 |
"when creating this class."
|
287 |
)
|
288 |
|
|
|
573 |
attention_mask (`torch.Tensor`):
|
574 |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
575 |
position of padding tokens and 1 for the position of non-padding tokens.
|
576 |
+
dropout (`int`, *optional*):
|
577 |
Attention dropout
|
578 |
softmax_scale (`float`, *optional*):
|
579 |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
|
|
691 |
)
|
692 |
|
693 |
|
694 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Quiet
|
|
|
695 |
class QuietSdpaAttention(QuietAttention):
|
696 |
"""
|
697 |
Quiet attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
|
|
765 |
query_states,
|
766 |
key_states,
|
767 |
value_states,
|
768 |
+
attn_mask=attention_mask.to(query_states.device) if attention_mask is not None else None,
|
769 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
770 |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
771 |
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
772 |
)
|
773 |
|
774 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
775 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
776 |
|
777 |
attn_output = self.o_proj(attn_output)
|
778 |
|
|
|
838 |
output_attentions=output_attentions,
|
839 |
use_cache=use_cache,
|
840 |
)
|
841 |
+
hidden_states = residual.to(hidden_states.device) + hidden_states
|
842 |
|
843 |
# Fully Connected
|
844 |
residual = hidden_states
|
|
|
1004 |
def set_input_embeddings(self, value):
|
1005 |
self.embed_tokens = value
|
1006 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1007 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1008 |
def forward(
|
1009 |
self,
|
|
|
1074 |
if self._attn_implementation == "flash_attention_2":
|
1075 |
# 2d mask is passed through the layers
|
1076 |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1077 |
+
elif self._attn_implementation == "sdpa" and not output_attentions and attention_mask.dim() == 2 and False:
|
1078 |
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1079 |
# the manual implementation that requires a 4D causal mask in all cases.
|
1080 |
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
|
|
1083 |
inputs_embeds,
|
1084 |
past_key_values_length,
|
1085 |
)
|
1086 |
+
elif attention_mask is None or attention_mask.dim() == 2:
|
1087 |
# 4d mask is passed through the layers
|
1088 |
attention_mask = _prepare_4d_causal_attention_mask(
|
1089 |
attention_mask,
|
|
|
1151 |
attentions=all_self_attns,
|
1152 |
)
|
1153 |
|
1154 |
+
def nonzero_mean(x, axis=None):
|
1155 |
+
if axis is not None:
|
1156 |
+
return x.sum(axis) / (x != 0).sum(axis)
|
1157 |
+
return x.sum() / (x != 0).sum()
|
1158 |
+
|
1159 |
+
def loss_mean(x):
|
1160 |
+
return x.sum() / (x != 0).sum()
|
1161 |
|
1162 |
class QuietForCausalLM(QuietPreTrainedModel):
|
1163 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1164 |
+
|
1165 |
def __init__(self, config):
|
1166 |
super().__init__(config)
|
1167 |
self.model = QuietModel(config)
|
1168 |
+
self.vocab_size = config.vocab_size
|
1169 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
1170 |
self.max_thoughts = config.max_thoughts
|
1171 |
+
self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads
|
1172 |
+
self.use_concat_talk_head = config.use_concat_talk_head
|
1173 |
+
self.use_shallow_talk = config.use_shallow_talk
|
1174 |
+
self.use_complex_talk_head = config.use_complex_talk_head
|
1175 |
+
self.use_weighted_talk_head = config.use_weighted_talk_head
|
1176 |
+
# the weighted head will output a single value, so it can't be passed to the lm head
|
1177 |
+
assert not (self.use_weighted_talk_head and self.use_shallow_talk)
|
1178 |
+
|
1179 |
+
self.n_ahead = 1
|
1180 |
+
self.n_ahead_talk = 1
|
1181 |
+
self.n_passes = 1
|
1182 |
+
self.n_tokens_print = 1
|
1183 |
+
self.gradient_accumulation_steps = 1
|
1184 |
+
self.training_steps = 0
|
1185 |
+
self.tokenizer = None
|
1186 |
+
self.start_token_id = None
|
1187 |
+
self.end_token_id = None
|
1188 |
+
self.rm_initialized = False
|
1189 |
+
self.residual_talk_head = True
|
1190 |
+
self.thought_init_std_scale = 1e-2
|
1191 |
+
|
1192 |
+
self.final_only_mode = False
|
1193 |
+
self.first_and_last_mode = True
|
1194 |
+
self.first_only = False
|
1195 |
+
self.original_loss_weight = 0.5
|
1196 |
+
|
1197 |
+
self.cumulative_residual = False
|
1198 |
+
self.clever_residual = False
|
1199 |
+
self.skip_residual = False
|
1200 |
+
self.no_residual = True
|
1201 |
+
|
1202 |
+
self.optimize_lm_head_only_at_start = False
|
1203 |
+
self.optimize_model_only_at_start = False
|
1204 |
+
|
1205 |
+
if self.optimize_model_only_at_start:
|
1206 |
+
raise NotImplementedError
|
1207 |
+
self.train_only_thinking_embedding = False
|
1208 |
+
self.weighted_embeddings = False
|
1209 |
+
self.use_start_thought_token = True
|
1210 |
+
self.use_end_thought_token = True
|
1211 |
+
self.initialize_thought_embedding_to_normal = False
|
1212 |
+
self.initial_start_token = "---"
|
1213 |
+
self.initial_end_token = "---"
|
1214 |
+
self.output_logits_at_the_end = True
|
1215 |
+
|
1216 |
+
self.wandb_enabled = False
|
1217 |
+
self.gumbel_temperature = 0.001
|
1218 |
+
|
1219 |
self.use_policy_loss = True
|
1220 |
+
self.include_policy_loss = True
|
1221 |
+
self.trice_mode = True
|
1222 |
self.remove_negative_rewards = True
|
1223 |
+
self.use_policy_loss_for_end_thought = True
|
1224 |
|
1225 |
+
self.base_original_mode = False
|
1226 |
+
self.original_mode = False
|
1227 |
+
|
1228 |
+
self.thought_prefix = "(Let's think step by step"
|
1229 |
+
self.tokenized_thought_prefix = None
|
1230 |
+
self.log_dict = defaultdict(int)
|
1231 |
+
self.eval_log_dict = defaultdict(int)
|
1232 |
+
self.print_final_only = True
|
1233 |
+
self.loss_mean = loss_mean
|
1234 |
+
self.all_rewards = []
|
1235 |
+
self.all_unreduced_losses = []
|
1236 |
+
self.kill_after = 100
|
1237 |
+
|
1238 |
+
self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
|
1239 |
+
self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
|
1240 |
+
|
1241 |
+
self.policy_loss_beta = 1e6
|
1242 |
+
self.embedding_scale = 1e2
|
1243 |
+
self.reinforce_temperature = 3
|
1244 |
+
self.base_loss_beta = 1
|
1245 |
+
|
1246 |
+
# Not used in the paper:
|
1247 |
+
self.use_thought_prefix = False
|
1248 |
+
self.use_reparam_for_thought_embeddings = False
|
1249 |
+
self.use_upper_triangular = False
|
1250 |
+
self.subtract_mean_reward = False
|
1251 |
+
self.comparison_mode = False
|
1252 |
+
self.gumbel_detach = True
|
1253 |
+
|
1254 |
+
# For visualization
|
1255 |
+
self.eval_mode = False
|
1256 |
+
|
1257 |
+
num_talk = 1
|
1258 |
+
talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2
|
1259 |
+
if self.use_weighted_talk_head:
|
1260 |
+
talk_output_dim = 1
|
1261 |
+
else:
|
1262 |
+
talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size
|
1263 |
+
|
1264 |
+
if not self.merged_lm_and_talk_heads:
|
1265 |
+
if self.use_complex_talk_head:
|
1266 |
+
self.talk_head = nn.ModuleList([nn.Sequential(
|
1267 |
+
nn.Linear(talk_input_dim, config.hidden_size),
|
1268 |
+
nn.ReLU(),
|
1269 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
1270 |
+
nn.ReLU(),
|
1271 |
+
nn.Linear(config.hidden_size, talk_output_dim, bias=False)
|
1272 |
+
)])
|
1273 |
+
else:
|
1274 |
+
self.talk_head = nn.ModuleList([nn.Sequential(
|
1275 |
+
nn.Linear(talk_input_dim, talk_output_dim, bias=False)
|
1276 |
+
)])
|
1277 |
|
1278 |
+
# Initialize weights and apply final processing
|
1279 |
+
self.post_init()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1280 |
|
1281 |
def get_input_embeddings(self):
|
1282 |
return self.model.embed_tokens
|
|
|
1296 |
def get_decoder(self):
|
1297 |
return self.model
|
1298 |
|
1299 |
+
@torch.no_grad()
|
1300 |
+
def infer(
|
1301 |
+
self,
|
1302 |
+
input_ids: torch.LongTensor,
|
1303 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1304 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1305 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1306 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1307 |
+
use_cache: Optional[bool] = None,
|
1308 |
+
output_attentions: Optional[bool] = None,
|
1309 |
+
output_hidden_states: Optional[bool] = None,
|
1310 |
+
return_dict: Optional[bool] = None,
|
1311 |
+
):
|
1312 |
+
batch_size, seq_len = input_ids.shape
|
1313 |
+
|
1314 |
+
# Save the original input_ids and attention_mask for later use
|
1315 |
+
original_input_ids = input_ids.clone()
|
1316 |
+
original_attention_mask = attention_mask.clone() if attention_mask is not None else None
|
1317 |
+
|
1318 |
+
# Append the start thought token to the input sequence
|
1319 |
+
start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
|
1320 |
+
input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
|
1321 |
+
seq_len += 1
|
1322 |
+
|
1323 |
+
# Update the attention mask
|
1324 |
+
if attention_mask is not None:
|
1325 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
1326 |
+
|
1327 |
+
# Generate the continuation
|
1328 |
+
continuation_length = self.n_ahead - 2
|
1329 |
+
new_key_values = past_key_values
|
1330 |
+
generated_tokens = []
|
1331 |
+
|
1332 |
+
for continuation_idx in range(continuation_length):
|
1333 |
+
outputs = self.model(
|
1334 |
+
input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device),
|
1335 |
+
attention_mask=attention_mask,
|
1336 |
+
position_ids=position_ids,
|
1337 |
+
past_key_values=new_key_values,
|
1338 |
+
inputs_embeds=inputs_embeds,
|
1339 |
+
use_cache=True,
|
1340 |
+
output_attentions=output_attentions,
|
1341 |
+
output_hidden_states=output_hidden_states,
|
1342 |
+
return_dict=return_dict,
|
1343 |
+
)
|
1344 |
+
new_key_values = outputs.past_key_values
|
1345 |
+
hidden_states = outputs[0]
|
1346 |
+
logits = self.lm_head(hidden_states)
|
1347 |
+
logits = logits[:, -1, :] # Only consider the last token
|
1348 |
+
|
1349 |
+
# Apply Gumbel-Softmax to the logits
|
1350 |
+
next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1)
|
1351 |
+
next_token_id = torch.argmax(next_token_logits, dim=-1)
|
1352 |
+
|
1353 |
+
# Append the generated token to the input sequence
|
1354 |
+
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1)
|
1355 |
+
generated_tokens.append(next_token_id)
|
1356 |
+
seq_len += 1
|
1357 |
+
|
1358 |
+
# Update the attention mask
|
1359 |
+
if attention_mask is not None:
|
1360 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
1361 |
+
|
1362 |
+
# Update the position ids
|
1363 |
+
if position_ids is not None:
|
1364 |
+
position_ids = torch.cat([position_ids, (position_ids[:, -1] + 1).unsqueeze(-1)], dim=-1)
|
1365 |
+
|
1366 |
+
# Append the end thought token to the input sequence
|
1367 |
+
end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
|
1368 |
+
input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
|
1369 |
+
seq_len += 1
|
1370 |
+
|
1371 |
+
# Update the attention mask
|
1372 |
+
if attention_mask is not None:
|
1373 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
1374 |
+
|
1375 |
+
# Get the hidden states before and after the thought
|
1376 |
+
outputs_before = self.model(
|
1377 |
+
input_ids=original_input_ids,
|
1378 |
+
attention_mask=original_attention_mask,
|
1379 |
+
position_ids=position_ids,
|
1380 |
+
past_key_values=past_key_values,
|
1381 |
+
inputs_embeds=inputs_embeds,
|
1382 |
+
use_cache=use_cache,
|
1383 |
+
output_attentions=output_attentions,
|
1384 |
+
output_hidden_states=output_hidden_states,
|
1385 |
+
return_dict=return_dict,
|
1386 |
+
)
|
1387 |
+
hidden_states_before = outputs_before[0][:, -1:, :]
|
1388 |
+
|
1389 |
+
# two new tokens: last continuation token and end thought token
|
1390 |
+
outputs_after = self.model(
|
1391 |
+
input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1),
|
1392 |
+
attention_mask=attention_mask,
|
1393 |
+
position_ids=position_ids,
|
1394 |
+
past_key_values=new_key_values,
|
1395 |
+
inputs_embeds=inputs_embeds,
|
1396 |
+
use_cache=use_cache,
|
1397 |
+
output_attentions=output_attentions,
|
1398 |
+
output_hidden_states=output_hidden_states,
|
1399 |
+
return_dict=return_dict,
|
1400 |
+
)
|
1401 |
+
hidden_states_after = outputs_after[0][:, -1:, :]
|
1402 |
+
|
1403 |
+
# Apply the talk head to get the mixing weight
|
1404 |
+
mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1))
|
1405 |
+
|
1406 |
+
# Apply the mixing weight to the hidden states
|
1407 |
+
mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after
|
1408 |
+
|
1409 |
+
# Apply the language model head to get the final logits
|
1410 |
+
logits = self.lm_head(mixed_hidden_states)
|
1411 |
+
|
1412 |
+
# Decode the logits to get the generated text
|
1413 |
+
generated_tokens = torch.cat(generated_tokens, dim=-1)
|
1414 |
+
generated_text = self.tokenizer.decode(generated_tokens.squeeze(), skip_special_tokens=True)
|
1415 |
+
|
1416 |
+
return generated_text
|
1417 |
+
|
1418 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1419 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1420 |
def forward(
|
|
|
1455 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1456 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1457 |
```"""
|
1458 |
+
log_dict = self.log_dict if self.training else self.eval_log_dict
|
1459 |
+
|
1460 |
+
if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after:
|
1461 |
+
raise ValueError("Killed after")
|
1462 |
+
|
1463 |
+
if not self.training:
|
1464 |
+
n_ahead_talk_to_restore = self.n_ahead_talk
|
1465 |
+
n_passes_to_restore = self.n_passes
|
1466 |
+
self.n_ahead_talk = 1
|
1467 |
+
self.n_passes = 1
|
1468 |
|
1469 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1470 |
output_hidden_states = (
|
|
|
1472 |
)
|
1473 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1474 |
|
1475 |
+
assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual
|
1476 |
+
assert not (self.skip_residual and self.use_policy_loss)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1477 |
|
1478 |
+
if self.tokenized_thought_prefix is None and self.use_thought_prefix:
|
1479 |
+
self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
|
|
1480 |
|
1481 |
+
def apply_head(head, states, detach=False):
|
1482 |
+
if detach:
|
1483 |
+
head_weight = head.weight.detach()
|
1484 |
+
else:
|
1485 |
+
head_weight = head.weight
|
1486 |
+
head_weight = head_weight.to(states.device)
|
1487 |
+
return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous()
|
1488 |
+
|
1489 |
+
def idx_if_sequential(head, idx=0):
|
1490 |
+
if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList):
|
1491 |
+
return idx_if_sequential(head[idx], idx=idx)
|
1492 |
+
return head
|
1493 |
+
|
1494 |
+
def none_repeat_interleave(x, n):
|
1495 |
+
if x is None:
|
1496 |
+
return x
|
1497 |
+
return x.repeat_interleave(n, dim=0)
|
1498 |
+
|
1499 |
+
if self.n_passes > 1:
|
1500 |
+
input_ids = none_repeat_interleave(input_ids, self.n_passes)
|
1501 |
+
attention_mask = none_repeat_interleave(attention_mask, self.n_passes)
|
1502 |
+
position_ids = none_repeat_interleave(position_ids, self.n_passes)
|
1503 |
+
inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes)
|
1504 |
+
labels = none_repeat_interleave(labels, self.n_passes)
|
1505 |
+
if past_key_values is not None:
|
1506 |
+
past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values]
|
1507 |
+
cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device)
|
1508 |
+
|
1509 |
+
self.tokenizer_has_start_thought_token = True
|
1510 |
+
self.tokenizer_has_end_thought_token = True
|
1511 |
+
if self.start_token_id is None:
|
1512 |
+
self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
|
1513 |
+
if self.start_token_id == 0:
|
1514 |
+
self.start_token_id = self.tokenizer.bos_token_id
|
1515 |
+
self.tokenizer_has_start_thought_token = False
|
1516 |
+
elif self.use_start_thought_token:
|
1517 |
+
# base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token)
|
1518 |
+
base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0]
|
1519 |
+
if self.initialize_thought_embedding_to_normal:
|
1520 |
+
self.start_embedding.data = torch.zeros_like(self.start_embedding.data)
|
1521 |
+
else:
|
1522 |
+
self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale
|
1523 |
+
self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
|
1524 |
+
if self.end_token_id is None:
|
1525 |
+
self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
|
1526 |
+
if self.end_token_id == 0:
|
1527 |
+
self.end_token_id = self.tokenizer.eos_token_id
|
1528 |
+
self.tokenizer_has_end_thought_token = False
|
1529 |
+
elif self.use_end_thought_token:
|
1530 |
+
# base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token)
|
1531 |
+
base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0]
|
1532 |
+
if self.initialize_thought_embedding_to_normal:
|
1533 |
+
self.end_embedding.data = torch.zeros_like(self.end_embedding.data)
|
1534 |
+
else:
|
1535 |
+
self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale
|
1536 |
+
self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
|
1537 |
+
|
1538 |
+
if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode):
|
1539 |
+
self.rm_initialized = True
|
1540 |
+
if not self.use_shallow_talk:
|
1541 |
+
head = self.talk_head[0]
|
1542 |
+
cur_head = head[-1] if isinstance(head, nn.Sequential) else head
|
1543 |
+
talk_input_dim = cur_head.weight.data.shape[1]
|
1544 |
+
talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0]
|
1545 |
+
cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype)
|
1546 |
+
else:
|
1547 |
+
# convert to identity transform
|
1548 |
+
def lambda_transform(cur_head):
|
1549 |
+
if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]:
|
1550 |
+
return torch.cat([
|
1551 |
+
torch.eye(
|
1552 |
+
cur_head.weight.data.shape[0],
|
1553 |
+
device=cur_head.weight.device,
|
1554 |
+
dtype=cur_head.weight.dtype
|
1555 |
+
),
|
1556 |
+
torch.zeros(
|
1557 |
+
cur_head.weight.data.shape[0],
|
1558 |
+
cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0],
|
1559 |
+
device=cur_head.weight.device,
|
1560 |
+
dtype=cur_head.weight.dtype
|
1561 |
+
)], dim=1)
|
1562 |
+
return torch.eye(
|
1563 |
+
cur_head.weight.data.shape[0],
|
1564 |
+
device=cur_head.weight.device,
|
1565 |
+
dtype=cur_head.weight.dtype
|
1566 |
+
)
|
1567 |
+
if isinstance(self.talk_head[0], nn.Sequential):
|
1568 |
+
for cur_head in self.talk_head[0]:
|
1569 |
+
# if it has weights
|
1570 |
+
if hasattr(cur_head, "weight"):
|
1571 |
+
cur_head.weight.data = lambda_transform(cur_head)
|
1572 |
+
else:
|
1573 |
+
self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0])
|
1574 |
|
1575 |
loss = None
|
1576 |
+
prev_rm_tokens = None
|
1577 |
+
cur_rm_tokens = None
|
1578 |
+
prev_rm_logits = None
|
1579 |
+
prev_sample_probs = None
|
1580 |
+
did_skip_sampling = None
|
1581 |
+
skip_sampling = None
|
1582 |
+
sample_probs = None
|
1583 |
+
hidden_states = None
|
1584 |
+
logits = None
|
1585 |
+
talk_kl_penalty = None
|
1586 |
+
rm_logits = None
|
1587 |
+
residual_logits = None
|
1588 |
+
probabilities_2d = None
|
1589 |
+
prev_probabilities_2d = None
|
1590 |
+
policy_reward = None
|
1591 |
+
logits_to_output = None
|
1592 |
+
batch_size, seq_len = input_ids.shape
|
1593 |
+
base_input_ids = input_ids.clone()
|
1594 |
+
loss_list = []
|
1595 |
+
dqn_loss_list = []
|
1596 |
+
sampled_token_history = []
|
1597 |
+
sample_probs_history = []
|
1598 |
+
action_loglikelihoods_list = []
|
1599 |
+
|
1600 |
+
if self.use_end_thought_token or self.use_start_thought_token:
|
1601 |
+
if not self.use_reparam_for_thought_embeddings:
|
1602 |
+
start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale
|
1603 |
+
end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale
|
1604 |
+
else:
|
1605 |
+
start_embedding = self.start_embedding * self.embedding_scale
|
1606 |
+
end_embedding = self.end_embedding * self.embedding_scale
|
1607 |
+
base_embeddings = self.model.embed_tokens.weight
|
1608 |
+
if self.train_only_thinking_embedding:
|
1609 |
+
base_embeddings = base_embeddings.detach()
|
1610 |
+
# # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1611 |
+
fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1
|
1612 |
+
for ahead_idx in range(fwd_iters):
|
1613 |
+
past_key_values_length = 0
|
1614 |
+
if past_key_values is not None:
|
1615 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1616 |
+
if use_legacy_cache:
|
1617 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1618 |
+
past_key_values_length = past_key_values.get_usable_length(seq_len)
|
1619 |
+
|
1620 |
+
if position_ids is None:
|
1621 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1622 |
+
position_ids = torch.arange(
|
1623 |
+
past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device
|
1624 |
+
)
|
1625 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_len)
|
1626 |
+
else:
|
1627 |
+
position_ids = position_ids.view(-1, seq_len).long()
|
1628 |
+
|
1629 |
+
if inputs_embeds is None:
|
1630 |
+
contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any()
|
1631 |
+
contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any()
|
1632 |
+
contains_thought = contains_start or contains_end
|
1633 |
+
if contains_thought:
|
1634 |
+
thought_id = self.start_token_id if contains_start else self.end_token_id
|
1635 |
+
cur_thought_embedding = start_embedding if contains_start else end_embedding
|
1636 |
+
if self.use_reparam_for_thought_embeddings:
|
1637 |
+
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
|
1638 |
+
inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
|
1639 |
+
if contains_start:
|
1640 |
+
sampled_start = inputs_embeds.clone().detach()
|
1641 |
+
if contains_end:
|
1642 |
+
sampled_end = inputs_embeds.clone().detach()
|
1643 |
+
else:
|
1644 |
+
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
|
1645 |
+
else:
|
1646 |
+
with torch.set_grad_enabled(not self.train_only_thinking_embedding):
|
1647 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
1648 |
+
|
1649 |
+
if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode:
|
1650 |
+
if attention_mask is None:
|
1651 |
+
base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device)
|
1652 |
+
base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len)
|
1653 |
+
base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1)
|
1654 |
+
attention_mask = base_attention_mask
|
1655 |
+
breakpoint()
|
1656 |
+
elif attention_mask.dim() == 2:
|
1657 |
+
if seq_len + past_key_values_length != attention_mask.shape[-1]:
|
1658 |
+
breakpoint()
|
1659 |
+
attention_mask = torch.cat(
|
1660 |
+
[torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask],
|
1661 |
+
dim=-1
|
1662 |
+
)
|
1663 |
+
# # if the attention mask
|
1664 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1665 |
+
attention_mask,
|
1666 |
+
(batch_size, seq_len),
|
1667 |
+
inputs_embeds,
|
1668 |
+
past_key_values_length,
|
1669 |
+
sliding_window=self.config.sliding_window,
|
1670 |
+
)
|
1671 |
+
|
1672 |
+
outputs = self.model(
|
1673 |
+
# input_ids=input_ids,
|
1674 |
+
attention_mask=attention_mask,
|
1675 |
+
position_ids=position_ids,
|
1676 |
+
past_key_values=past_key_values,
|
1677 |
+
inputs_embeds=inputs_embeds,
|
1678 |
+
use_cache=use_cache,
|
1679 |
+
output_attentions=output_attentions,
|
1680 |
+
output_hidden_states=output_hidden_states,
|
1681 |
+
return_dict=return_dict,
|
1682 |
+
)
|
1683 |
+
|
1684 |
+
prev_hidden_states = hidden_states
|
1685 |
+
hidden_states = outputs[0]
|
1686 |
+
prev_rm_logits = rm_logits # for policy gradient
|
1687 |
+
prev_rm_tokens = cur_rm_tokens # for policy gradient
|
1688 |
+
|
1689 |
+
if ahead_idx == 0:
|
1690 |
+
hidden_states_lm = hidden_states
|
1691 |
+
logits = self.lm_head(hidden_states_lm)
|
1692 |
+
base_hidden_states = hidden_states.clone()
|
1693 |
+
initial_loss_logits = logits.clone()
|
1694 |
+
if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start:
|
1695 |
+
logits = logits.detach()
|
1696 |
+
base_hidden_states = base_hidden_states.detach()
|
1697 |
+
if self.optimize_model_only_at_start:
|
1698 |
+
hidden_states = hidden_states.detach()
|
1699 |
+
base_logits = logits.clone()
|
1700 |
+
else:
|
1701 |
+
talk_hidden_states = hidden_states
|
1702 |
+
if self.merged_lm_and_talk_heads:
|
1703 |
+
assert self.no_residual
|
1704 |
+
residual_logits = self.lm_head(hidden_states)
|
1705 |
+
talk_hidden_states = hidden_states
|
1706 |
+
else:
|
1707 |
+
if ahead_idx > self.n_ahead - 1:
|
1708 |
+
cur_base_hidden = torch.cat([
|
1709 |
+
base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :],
|
1710 |
+
base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :]
|
1711 |
+
], dim=-2)
|
1712 |
+
else:
|
1713 |
+
cur_base_hidden = base_hidden_states
|
1714 |
+
|
1715 |
+
if self.use_concat_talk_head:
|
1716 |
+
# concatenate the hidden states with the original hidden states
|
1717 |
+
head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1)
|
1718 |
+
else:
|
1719 |
+
head_input_hidden_states = talk_hidden_states
|
1720 |
+
|
1721 |
+
residual_logits = self.talk_head[0](head_input_hidden_states)
|
1722 |
+
if self.use_shallow_talk:
|
1723 |
+
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
|
1724 |
+
residual_logits = residual_logits.to(logits.device)
|
1725 |
+
if self.use_weighted_talk_head:
|
1726 |
+
# combine the cur_base_hidden with the talk_hidden_states according to the weighted head
|
1727 |
+
residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits
|
1728 |
+
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
|
1729 |
+
|
1730 |
+
assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1
|
1731 |
+
if self.clever_residual:
|
1732 |
+
if ahead_idx >= self.n_ahead - 1:
|
1733 |
+
# get the logits shifted according to the current talk ahead
|
1734 |
+
cur_base_logits = torch.cat([
|
1735 |
+
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
1736 |
+
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
1737 |
+
], dim=-2)
|
1738 |
+
if self.optimize_lm_head_only_at_start:
|
1739 |
+
cur_base_logits = cur_base_logits.detach()
|
1740 |
+
logits = cur_base_logits + residual_logits
|
1741 |
+
else:
|
1742 |
+
logits += residual_logits / self.n_ahead
|
1743 |
+
elif self.cumulative_residual:
|
1744 |
+
if self.residual_talk_head:
|
1745 |
+
if ahead_idx < self.n_ahead:
|
1746 |
+
logits += residual_logits
|
1747 |
+
else:
|
1748 |
+
# get the logits shifted according to the current talk ahead
|
1749 |
+
cur_base_logits = torch.cat([
|
1750 |
+
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
1751 |
+
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
1752 |
+
], dim=-2)
|
1753 |
+
if self.optimize_lm_head_only_at_start:
|
1754 |
+
cur_base_logits = cur_base_logits.detach()
|
1755 |
+
logits = cur_base_logits + residual_logits
|
1756 |
+
else:
|
1757 |
+
if ahead_idx < self.n_ahead:
|
1758 |
+
logits += residual_logits
|
1759 |
+
else:
|
1760 |
+
logits = residual_logits
|
1761 |
+
elif self.skip_residual:
|
1762 |
+
if ahead_idx >= self.n_ahead:
|
1763 |
+
# get the logits shifted according to the current talk ahead
|
1764 |
+
cur_base_logits = torch.cat([
|
1765 |
+
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
1766 |
+
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
1767 |
+
], dim=-2)
|
1768 |
+
if self.optimize_lm_head_only_at_start:
|
1769 |
+
cur_base_logits = cur_base_logits.detach()
|
1770 |
+
logits = cur_base_logits
|
1771 |
+
elif self.no_residual:
|
1772 |
+
logits = residual_logits
|
1773 |
+
else:
|
1774 |
+
logits = base_logits + residual_logits
|
1775 |
+
|
1776 |
+
attempted = False
|
1777 |
+
talk_loss_list = []
|
1778 |
+
if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0):
|
1779 |
+
loss = None
|
1780 |
+
attempted = True
|
1781 |
+
|
1782 |
+
if labels is not None:
|
1783 |
+
for shift_amount in range(self.n_ahead_talk):
|
1784 |
+
# Shift so that tokens < n predict n
|
1785 |
+
# ab[cde]f
|
1786 |
+
# abc[def]
|
1787 |
+
if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
|
1788 |
+
loss_logits = initial_loss_logits
|
1789 |
+
else:
|
1790 |
+
loss_logits = logits
|
1791 |
+
shift_logits = loss_logits[..., shift_amount:-1, :].contiguous()
|
1792 |
+
shift_labels = labels[..., 1 + shift_amount:].contiguous()
|
1793 |
+
# Flatten the tokens
|
1794 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
1795 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1796 |
+
shift_labels = shift_labels.view(-1).clone()
|
1797 |
+
# Enable model parallelism
|
1798 |
+
shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100
|
1799 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1800 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1801 |
+
if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode:
|
1802 |
+
loss_list.append(loss)
|
1803 |
+
talk_loss_list.append(nonzero_mean(loss).detach())
|
1804 |
+
|
1805 |
+
if not attempted or self.comparison_mode:
|
1806 |
+
rm_hidden_states = hidden_states
|
1807 |
+
# print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm())
|
1808 |
+
rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start)
|
1809 |
+
|
1810 |
+
# don't allow it to predict the thinking token
|
1811 |
+
if self.tokenizer_has_start_thought_token:
|
1812 |
+
rm_logits[..., self.start_token_id] = -1e10
|
1813 |
+
if self.tokenizer_has_end_thought_token:
|
1814 |
+
rm_logits[..., self.end_token_id] = -1e10
|
1815 |
+
probabilities = rm_logits
|
1816 |
+
if probabilities_2d is not None:
|
1817 |
+
prev_probabilities_2d = probabilities_2d.clone()
|
1818 |
+
probabilities_2d = probabilities.view(-1, probabilities.size(-1))
|
1819 |
+
|
1820 |
+
did_skip_sampling = skip_sampling
|
1821 |
+
skip_sampling = False
|
1822 |
+
if ahead_idx == 0 and self.use_start_thought_token:
|
1823 |
+
override_token = self.start_token_id
|
1824 |
+
elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]:
|
1825 |
+
override_token = self.tokenized_thought_prefix[..., ahead_idx]
|
1826 |
+
elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token:
|
1827 |
+
override_token = self.end_token_id
|
1828 |
+
else:
|
1829 |
+
override_token = None
|
1830 |
+
if override_token is not None and self.n_ahead > 1:
|
1831 |
+
# always start with the start token
|
1832 |
+
probabilities_2d = torch.zeros_like(probabilities_2d)
|
1833 |
+
probabilities_2d[:, override_token] = 1.0
|
1834 |
+
skip_sampling = True
|
1835 |
+
elif ahead_idx >= self.n_ahead - 1:
|
1836 |
+
if labels is not None: # we're in the talk phase
|
1837 |
+
cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1
|
1838 |
+
# print("Setting rm to labels", cur_talk_n, "during", ahead_idx)
|
1839 |
+
shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device)
|
1840 |
+
padding = torch.full_like(
|
1841 |
+
labels[..., :cur_talk_n],
|
1842 |
+
self.tokenizer.pad_token_id,
|
1843 |
+
dtype=torch.long,
|
1844 |
+
device=shift_labels.device
|
1845 |
+
)
|
1846 |
+
new_rm_tokens = torch.cat(
|
1847 |
+
[shift_labels, padding],
|
1848 |
+
dim=-1
|
1849 |
+
)
|
1850 |
+
# convert rm tokens to one-hot
|
1851 |
+
probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype)
|
1852 |
+
skip_sampling = True
|
1853 |
+
else:
|
1854 |
+
continue
|
1855 |
+
temperature = self.gumbel_temperature if self.training else 0.001
|
1856 |
+
prev_sample_probs = sample_probs
|
1857 |
+
sample_probs = probabilities_2d
|
1858 |
+
if ahead_idx < self.n_ahead - 1 and not skip_sampling:
|
1859 |
+
probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1)
|
1860 |
+
if self.gumbel_detach:
|
1861 |
+
probabilities_2d = probabilities_2d.detach()
|
1862 |
+
sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu())
|
1863 |
+
# convert rm logits directly to embeddings
|
1864 |
+
contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0)
|
1865 |
+
contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0)
|
1866 |
+
contains_thought = contains_start or contains_end
|
1867 |
+
|
1868 |
+
if not contains_thought:
|
1869 |
+
with torch.set_grad_enabled(not self.train_only_thinking_embedding):
|
1870 |
+
inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype))
|
1871 |
+
else:
|
1872 |
+
thought_id = self.start_token_id if contains_start else self.end_token_id
|
1873 |
+
cur_thought_embedding = start_embedding if contains_start else end_embedding
|
1874 |
+
if self.use_reparam_for_thought_embeddings:
|
1875 |
+
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
|
1876 |
+
inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
|
1877 |
+
if contains_start:
|
1878 |
+
sampled_start = inputs_embeds.clone().detach()
|
1879 |
+
else:
|
1880 |
+
sampled_end = inputs_embeds.clone().detach()
|
1881 |
+
else:
|
1882 |
+
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
|
1883 |
+
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
|
1884 |
+
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
|
1885 |
+
|
1886 |
+
if len(attention_mask.shape) == 2:
|
1887 |
+
breakpoint()
|
1888 |
+
else:
|
1889 |
+
original_attention = attention_mask[..., :attention_mask.shape[-2]]
|
1890 |
+
if self.use_upper_triangular:
|
1891 |
+
new_attention = original_attention
|
1892 |
+
else:
|
1893 |
+
original_attention = original_attention == attention_mask.max()
|
1894 |
+
# because eye isn't implemented for BF16, we need to handle the case
|
1895 |
+
if not attention_mask.dtype == torch.bfloat16:
|
1896 |
+
new_attention = torch.eye(
|
1897 |
+
seq_len, dtype=attention_mask.dtype, device=attention_mask.device
|
1898 |
+
)
|
1899 |
+
else:
|
1900 |
+
new_attention = torch.eye(
|
1901 |
+
seq_len, dtype=torch.float32, device=attention_mask.device
|
1902 |
+
).to(attention_mask.dtype)
|
1903 |
+
|
1904 |
+
new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1)
|
1905 |
+
new_attention = new_attention * original_attention
|
1906 |
+
new_attention[new_attention == 0] = attention_mask.min()
|
1907 |
+
new_attention[new_attention == 1] = attention_mask.max()
|
1908 |
+
attention_mask = torch.cat([attention_mask, new_attention], dim=-1)
|
1909 |
+
past_key_values = outputs.past_key_values
|
1910 |
+
position_ids = position_ids + 1
|
1911 |
+
|
1912 |
+
if labels is not None and (self.n_ahead > 1 or not self.base_original_mode):
|
1913 |
+
# Shift so that tokens < n predict n
|
1914 |
+
# logits: abcdef -> bcdef? -> cdef??
|
1915 |
+
# labels: abcdef -> ?bcdef -> ??cdef
|
1916 |
+
if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
|
1917 |
+
loss_logits = initial_loss_logits
|
1918 |
+
else:
|
1919 |
+
loss_logits = logits
|
1920 |
+
shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1))
|
1921 |
+
shift_logits = loss_logits[..., :-shift_idx, :].contiguous()
|
1922 |
+
shift_labels = labels[..., shift_idx:].contiguous()
|
1923 |
+
# Flatten the tokens
|
1924 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
1925 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1926 |
+
shift_labels = shift_labels.view(-1)
|
1927 |
+
# Enable model parallelism
|
1928 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1929 |
+
# if shift_labels.min() == self.tokenizer.pad_token_id:
|
1930 |
+
shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels)
|
1931 |
+
unreduced_loss = loss_fct(shift_logits, shift_labels)
|
1932 |
+
if torch.any(unreduced_loss != unreduced_loss):
|
1933 |
+
raise ValueError("NaN loss")
|
1934 |
+
unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1)
|
1935 |
+
loss_list.append(unreduced_loss)
|
1936 |
+
|
1937 |
+
|
1938 |
+
if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token):
|
1939 |
+
# we treat the change in loss as the reward
|
1940 |
+
previous_loss = loss_list[-2]
|
1941 |
+
# for example, suppose n_ahead = 3 and n_ahead_talk = 2
|
1942 |
+
# note that we end at self.n_ahead + self.n_ahead_talk - 2
|
1943 |
+
# in this case, 5 - 2 = 3, so we end at ahead_idx = 3
|
1944 |
+
# we also predict the next token at ahead_idx = 2
|
1945 |
+
# when we get to ahead_idx = 2, we predict ahead
|
1946 |
+
# so we shift by 1
|
1947 |
+
# note that this is ahead_idx = n_ahead - 1
|
1948 |
+
# when we get to ahead_idx = 3, we predict ahead
|
1949 |
+
# so we shift by 2
|
1950 |
+
# note that this is ahead_idx = n_ahead
|
1951 |
+
if ahead_idx < self.n_ahead - 1:
|
1952 |
+
shift_amount = 0
|
1953 |
+
original_dqn_reward = (previous_loss - unreduced_loss).detach()
|
1954 |
+
if self.first_and_last_mode:
|
1955 |
+
original_dqn_reward = original_dqn_reward * 0.0
|
1956 |
+
else:
|
1957 |
+
# logits vs cur_policy_shift_logits
|
1958 |
+
# let's look at rm_logits and prev_rm_logits
|
1959 |
+
shift_amount = max(0, ahead_idx - (self.n_ahead - 1))
|
1960 |
+
# let's say shift_amount = 2
|
1961 |
+
# abcdefg -> bcdefg? -> cdefg??
|
1962 |
+
# logits = [a b]c d e f[g]
|
1963 |
+
# labels = [a b c]d e f g
|
1964 |
+
cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach()
|
1965 |
+
cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous()
|
1966 |
+
# Flatten the tokens
|
1967 |
+
cur_policy_loss_fct = CrossEntropyLoss(reduction="none")
|
1968 |
+
cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size)
|
1969 |
+
cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone()
|
1970 |
+
# Enable model parallelism
|
1971 |
+
cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100
|
1972 |
+
cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device)
|
1973 |
+
cur_policy_reward_base_loss = loss_fct(
|
1974 |
+
cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device)
|
1975 |
+
).reshape(logits.shape[0], -1)
|
1976 |
+
original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss
|
1977 |
+
|
1978 |
+
if not did_skip_sampling:
|
1979 |
+
nonzero_indices = prev_probabilities_2d.nonzero()
|
1980 |
+
action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]]
|
1981 |
+
action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount]
|
1982 |
+
action_loglikelihoods_list.append(action_loglikelihoods_2d)
|
1983 |
+
if policy_reward is None:
|
1984 |
+
policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
|
1985 |
+
else:
|
1986 |
+
if self.n_ahead_talk > shift_amount:
|
1987 |
+
added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
|
1988 |
+
else:
|
1989 |
+
added_reward = original_dqn_reward
|
1990 |
+
policy_reward += added_reward
|
1991 |
+
|
1992 |
+
if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2:
|
1993 |
+
# only compute during the thinking phase
|
1994 |
+
if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token):
|
1995 |
+
# sampled_start, sampled_end
|
1996 |
+
# calculate the log likelihood of the start and end embeddings sampled from a multivariate normal distribution
|
1997 |
+
# with mean start_embedding[0] and standard deviation start_embedding[1]
|
1998 |
+
if self.use_start_thought_token:
|
1999 |
+
exp_start_std = torch.exp(start_embedding[1])
|
2000 |
+
start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi)
|
2001 |
+
start_loglikelihood = start_loglikelihood.mean(dim=-1)
|
2002 |
+
if self.use_end_thought_token:
|
2003 |
+
exp_end_std = torch.exp(end_embedding[1])
|
2004 |
+
end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi)
|
2005 |
+
end_loglikelihood = end_loglikelihood.mean(dim=-1)
|
2006 |
+
# we use the mean instead of the sum to prevent dependence on the dimensionality of the embeddings
|
2007 |
+
if self.use_end_thought_token and self.use_policy_loss_for_end_thought:
|
2008 |
+
action_loglikelihoods_list.append(end_loglikelihood)
|
2009 |
+
if self.use_start_thought_token:
|
2010 |
+
action_loglikelihoods_list.append(start_loglikelihood)
|
2011 |
+
|
2012 |
+
if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode:
|
2013 |
+
with torch.no_grad():
|
2014 |
+
# calculate the 0.75 quantile of the rewards
|
2015 |
+
filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten()
|
2016 |
+
filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id
|
2017 |
+
filtered_tokens = filtered_tokens[filtered_tokens_mask]
|
2018 |
+
filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()
|
2019 |
+
filtered_rewards = filtered_rewards[filtered_tokens_mask]
|
2020 |
+
|
2021 |
+
abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten())
|
2022 |
+
abs_reward_list = abs_reward_list[filtered_tokens_mask]
|
2023 |
+
medium_quantile = np.quantile(abs_reward_list, 0.5)
|
2024 |
+
upper_quantile = np.quantile(abs_reward_list, 0.95)
|
2025 |
+
|
2026 |
+
save_tokens_with_rewards_to_pdf(
|
2027 |
+
filtered_tokens,
|
2028 |
+
[0] + filtered_rewards.tolist(),
|
2029 |
+
self.tokenizer,
|
2030 |
+
output_file=f"texts/rewards_talk_{self.n_ahead_talk}_{self.training_steps}.pdf",
|
2031 |
+
eps=medium_quantile,
|
2032 |
+
eps2=upper_quantile,
|
2033 |
+
)
|
2034 |
+
|
2035 |
+
def plot_kde(data, losses):
|
2036 |
+
sns.set(style="whitegrid")
|
2037 |
+
# Create the KDE plot
|
2038 |
+
sns.kdeplot(data, fill=True)
|
2039 |
+
# Set the plot title and labels
|
2040 |
+
plt.title("KDE Plot")
|
2041 |
+
plt.xlabel("Value")
|
2042 |
+
plt.ylabel("Density")
|
2043 |
+
# Save the plot
|
2044 |
+
plt.savefig(f"texts/kde_talk_{self.n_ahead_talk}_{self.training_steps}.pdf")
|
2045 |
+
# Close the plot
|
2046 |
+
plt.close()
|
2047 |
+
|
2048 |
+
# Step 1: Create a base color palette
|
2049 |
+
base_colors = sns.color_palette("light:#5A9", n_colors=256) # More colors for a smoother gradient
|
2050 |
+
base_cmap = LinearSegmentedColormap.from_list("log_light", base_colors)
|
2051 |
+
log_norm = LogNorm(vmin=1e-3, vmax=10)
|
2052 |
+
|
2053 |
+
sns.kdeplot(x=data, y=losses, fill=True, levels=20, norm=log_norm, cut=0, linewidths=0)
|
2054 |
+
# limit y to 0 to 25 and x to -1 to 1
|
2055 |
+
plt.xlim(-1, 1)
|
2056 |
+
plt.ylim(0, 25)
|
2057 |
+
plt.savefig(f"texts/jointer_talk_{self.n_ahead_talk}_{self.training_steps}.pdf")
|
2058 |
+
plt.close()
|
2059 |
+
|
2060 |
+
self.all_rewards.extend(filtered_rewards)
|
2061 |
+
self.all_unreduced_losses.extend(unreduced_loss[:, :-1].flatten()[filtered_tokens_mask].float().flatten().cpu().detach().numpy())
|
2062 |
+
plot_kde(self.all_rewards, self.all_unreduced_losses)
|
2063 |
+
|
2064 |
+
for action_loglikelihoods_2d in action_loglikelihoods_list:
|
2065 |
+
train_policy_reward = policy_reward
|
2066 |
+
|
2067 |
+
# discard rewards below the mean
|
2068 |
+
if self.trice_mode and self.n_passes > 1:
|
2069 |
+
batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1])
|
2070 |
+
# average over the passes
|
2071 |
+
train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True)
|
2072 |
+
train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1])
|
2073 |
+
|
2074 |
+
if self.subtract_mean_reward:
|
2075 |
+
train_policy_reward = train_policy_reward - train_policy_reward.mean()
|
2076 |
+
if self.remove_negative_rewards:
|
2077 |
+
fixed_policy_reward = train_policy_reward.detach().clamp(min=0)
|
2078 |
+
else:
|
2079 |
+
fixed_policy_reward = train_policy_reward.detach()
|
2080 |
+
actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device)
|
2081 |
+
if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts:
|
2082 |
+
# This will only happen when we force the next token to be the end of thought token
|
2083 |
+
break
|
2084 |
+
dqn_loss_list.append(actor_loss.mean())
|
2085 |
+
|
2086 |
+
if loss_list:
|
2087 |
+
if self.first_and_last_mode:
|
2088 |
+
loss = sum(
|
2089 |
+
self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk)
|
2090 |
+
) * (1 - self.original_loss_weight) / self.n_ahead_talk
|
2091 |
+
loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight
|
2092 |
+
# Let's NaN out the others
|
2093 |
+
# e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4
|
2094 |
+
for i in range(1, len(loss_list) - self.n_ahead_talk):
|
2095 |
+
loss_list[i] = loss_list[i] * math.nan
|
2096 |
+
elif self.first_only:
|
2097 |
+
loss = self.loss_mean(loss_list[0])
|
2098 |
+
elif self.final_only_mode:
|
2099 |
+
loss = sum(
|
2100 |
+
self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1)
|
2101 |
+
) / self.n_ahead_talk
|
2102 |
+
else:
|
2103 |
+
loss = None
|
2104 |
+
for i in range(len(loss_list)):
|
2105 |
+
cur_loss = self.loss_mean(loss_list[i])
|
2106 |
+
if loss is not None:
|
2107 |
+
loss = loss + cur_loss.to(loss.device)
|
2108 |
+
else:
|
2109 |
+
loss = cur_loss
|
2110 |
+
loss = loss / len(loss_list)
|
2111 |
+
|
2112 |
+
loss = loss * self.base_loss_beta
|
2113 |
+
|
2114 |
+
if dqn_loss_list:
|
2115 |
+
dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list)
|
2116 |
+
if self.include_policy_loss:
|
2117 |
+
if loss is not None:
|
2118 |
+
loss += dqn_loss * self.policy_loss_beta
|
2119 |
+
else:
|
2120 |
+
loss = dqn_loss * self.policy_loss_beta
|
2121 |
|
2122 |
if not return_dict:
|
2123 |
+
output = (logits,) + outputs[1:]
|
2124 |
+
return (loss,) + output if loss is not None else output
|
2125 |
+
|
2126 |
+
base_log_dict = {
|
2127 |
+
f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list))
|
2128 |
+
}
|
2129 |
+
|
2130 |
+
if loss is not None:
|
2131 |
+
base_log_dict["loss_train"] = loss.item()
|
2132 |
+
|
2133 |
+
for loss_key, loss_val in base_log_dict.items():
|
2134 |
+
log_dict[loss_key] += loss_val / self.n_tokens_print
|
2135 |
+
|
2136 |
+
if self.use_policy_loss and policy_reward is not None:
|
2137 |
+
log_dict["policy_loss"] += dqn_loss / self.n_tokens_print
|
2138 |
+
log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print
|
2139 |
|
2140 |
+
if not loss_list:
|
2141 |
+
if loss is not None:
|
2142 |
+
log_dict["loss_0"] += loss / self.n_tokens_print
|
2143 |
+
else:
|
2144 |
+
log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print
|
2145 |
+
log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print
|
2146 |
+
|
2147 |
+
# also log relative losses to loss_0
|
2148 |
+
if loss_list:
|
2149 |
+
for i in range(len(loss_list)):
|
2150 |
+
talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1)
|
2151 |
+
if not talk_loss_list:
|
2152 |
+
cur_talk_loss = nonzero_mean(loss_list[0])
|
2153 |
+
else:
|
2154 |
+
cur_talk_loss = talk_loss_list[talk_idx]
|
2155 |
+
log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print
|
2156 |
+
if self.training:
|
2157 |
+
self.training_steps += 1
|
2158 |
+
try:
|
2159 |
+
# if self.training_steps % (self.gradient_accumulation_steps * 256) == 0:
|
2160 |
+
if self.wandb_enabled:
|
2161 |
+
if self.training_steps % (self.n_tokens_print) == 0 or not self.training:# and "0" in str(loss.device):
|
2162 |
+
if not self.training:
|
2163 |
+
new_log_dict = {}
|
2164 |
+
for key in list(log_dict.keys()):
|
2165 |
+
new_log_dict["eval_" + key] = log_dict[key]
|
2166 |
+
log_dict = new_log_dict
|
2167 |
+
log_dict["training_steps"] = self.training_steps
|
2168 |
+
log_dict["batch_size"] = batch_size
|
2169 |
+
log_dict["example_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps
|
2170 |
+
if self.n_ahead > 1:
|
2171 |
+
log_dict["compute_steps"] = self.training_steps * batch_size * (self.n_ahead + self.n_ahead_talk - 1) * self.gradient_accumulation_steps
|
2172 |
+
else: # There's no overhead for talk tokens if there's no thinking
|
2173 |
+
log_dict["compute_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps
|
2174 |
+
# remove all nans
|
2175 |
+
for key in list(log_dict.keys()):
|
2176 |
+
if log_dict[key] != log_dict[key]:
|
2177 |
+
del log_dict[key]
|
2178 |
+
if self.training:
|
2179 |
+
wandb.log(log_dict)
|
2180 |
+
if self.training:
|
2181 |
+
self.log_dict = defaultdict(int)
|
2182 |
+
else:
|
2183 |
+
self.eval_log_dict = defaultdict(int)
|
2184 |
+
except Exception as e:
|
2185 |
+
pass
|
2186 |
+
|
2187 |
+
if not self.training:
|
2188 |
+
self.n_ahead_talk = n_ahead_talk_to_restore
|
2189 |
+
self.n_passes = n_passes_to_restore
|
2190 |
return CausalLMOutputWithPast(
|
2191 |
+
loss=loss if loss is not None else None,
|
2192 |
+
logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
|
2193 |
past_key_values=outputs.past_key_values,
|
2194 |
hidden_states=outputs.hidden_states,
|
2195 |
attentions=outputs.attentions,
|
2196 |
)
|
2197 |
|
2198 |
+
|
2199 |
def prepare_inputs_for_generation(
|
2200 |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
2201 |
):
|
|
|
2211 |
|
2212 |
# Keep only the unprocessed tokens:
|
2213 |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
2214 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as
|
2215 |
# input)
|
2216 |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
2217 |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|