Culmenus commited on
Commit
915ac69
·
1 Parent(s): d7ebe1a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: agpl-3.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - mim_gold_ner
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: XLMR-ENIS-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: mim_gold_ner
20
+ type: mim_gold_ner
21
+ args: mim-gold-ner
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.8803619696791632
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.8517339397384878
29
+ - name: F1
30
+ type: f1
31
+ value: 0.8658113730929264
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9837103244207861
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # XLMR-ENIS-finetuned-ner
41
+
42
+ This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.0891
45
+ - Precision: 0.8804
46
+ - Recall: 0.8517
47
+ - F1: 0.8658
48
+ - Accuracy: 0.9837
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 2e-05
68
+ - train_batch_size: 16
69
+ - eval_batch_size: 16
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 3
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | 0.0573 | 1.0 | 2904 | 0.1024 | 0.8608 | 0.8003 | 0.8295 | 0.9799 |
80
+ | 0.0307 | 2.0 | 5808 | 0.0899 | 0.8707 | 0.8380 | 0.8540 | 0.9825 |
81
+ | 0.0198 | 3.0 | 8712 | 0.0891 | 0.8804 | 0.8517 | 0.8658 | 0.9837 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.11.2
87
+ - Pytorch 1.9.0+cu102
88
+ - Datasets 1.12.1
89
+ - Tokenizers 0.10.3