Upload Tiny-Alice-multi-turn-chat.py
Browse files
Tiny-Alice-multi-turn-chat.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Load model and tokenizer
|
5 |
+
model_path = "D1rtyB1rd/Dirty-Alice-Tiny-1.1B-V2"
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
8 |
+
|
9 |
+
# Define the stop token and system message
|
10 |
+
stop_token_id = 2 ## </s>
|
11 |
+
system_message = "<|system|>\nYou are Alice.\n</s>"
|
12 |
+
|
13 |
+
def chat_with_model(prompt_text, stop_token_id, model, tokenizer):
|
14 |
+
# Encode the prompt text
|
15 |
+
encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False, return_tensors="pt")
|
16 |
+
|
17 |
+
# Generate response
|
18 |
+
output_sequences = model.generate(
|
19 |
+
input_ids=encoded_prompt,
|
20 |
+
max_new_tokens=1024,
|
21 |
+
temperature=0.2,
|
22 |
+
repetition_penalty=1.2,
|
23 |
+
top_k=20,
|
24 |
+
top_p=0.9,
|
25 |
+
do_sample=True,
|
26 |
+
num_return_sequences=1,
|
27 |
+
eos_token_id=stop_token_id,
|
28 |
+
)
|
29 |
+
|
30 |
+
# Decode the generated sequence
|
31 |
+
generated_sequence = output_sequences[0].tolist()
|
32 |
+
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
|
33 |
+
|
34 |
+
# Find the position of the stop token and truncate if necessary
|
35 |
+
stop_token_str = tokenizer.decode([stop_token_id], clean_up_tokenization_spaces=True)
|
36 |
+
if stop_token_str in text:
|
37 |
+
text = text.split(stop_token_str)[0] # Remove text after the stop token
|
38 |
+
|
39 |
+
response_text = text[len(prompt_text):].strip() # Extract only the response text
|
40 |
+
return response_text
|
41 |
+
|
42 |
+
def build_prompt(conversation_history, user_input):
|
43 |
+
"""
|
44 |
+
Constructs the prompt for the model using conversation history and the latest user input.
|
45 |
+
"""
|
46 |
+
prompt_text = f"{conversation_history}\n<|user|>\n{user_input}\n</s>\n<|assistant|>\n"
|
47 |
+
return prompt_text
|
48 |
+
|
49 |
+
def main():
|
50 |
+
# Initialize conversation history with the system message
|
51 |
+
conversation_history = f"{system_message}\n"
|
52 |
+
|
53 |
+
# Chat loop
|
54 |
+
while True:
|
55 |
+
user_input = input("User: ") # Get text input from the user
|
56 |
+
|
57 |
+
# Construct prompt text for model input
|
58 |
+
prompt_text = build_prompt(conversation_history, user_input)
|
59 |
+
|
60 |
+
response_text = chat_with_model(prompt_text, stop_token_id, model, tokenizer)
|
61 |
+
response_text = response_text.replace('<s>', '')
|
62 |
+
|
63 |
+
print(f"\n------\nAlice:\n{response_text}\n------")
|
64 |
+
|
65 |
+
# Update conversation history
|
66 |
+
conversation_history += f"<|user|>\n{user_input}\n</s>\n<|assistant|>\n{response_text}\n</s>\n"
|
67 |
+
|
68 |
+
# Trim the conversation history to avoid overly long inputs
|
69 |
+
if len(conversation_history) > 2048:
|
70 |
+
conversation_history = conversation_history[-1024:]
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
main()
|
74 |
+
|