DAIEF's picture
Upload PPO LunarLander-v2 trained agent
74c30a5 verified
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb10ab20820>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb10ab208b0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb10ab20940>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb10ab209d0>",
"_build": "<function ActorCriticPolicy._build at 0x7fb10ab20a60>",
"forward": "<function ActorCriticPolicy.forward at 0x7fb10ab20af0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb10ab20b80>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb10ab20c10>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fb10ab20ca0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb10ab20d30>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb10ab20dc0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb10ab20e50>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fb10b448380>"
},
"verbose": 3,
"policy_kwargs": {},
"num_timesteps": 5041,
"_total_timesteps": 200000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1709274137750789628,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADN9Z73x8rA/NxmSvpUtN74or1+8mxfMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.97952,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVmgYAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGvN0pEx7AuMAWyUS5GMAXSUR0ARm3mV7hNudX2UKGgGR8BSL/qHGjsVaAdLRWgIR0AR5tk4FRpDdX2UKGgGR8B4oJkhA4XGaAdLYWgIR0ASSjKxLTQWdX2UKGgGR8BirlrdnCfpaAdLT2gIR0ASmJXQtz0ZdX2UKGgGR8B41BeyAxzraAdLh2gIR0ATHtZ3cHnmdX2UKGgGR8B4bPmr8zhxaAdLZmgIR0ATfPIGQjlgdX2UKGgGR8BSW6CYkVvdaAdLQ2gIR0ATunCO3lS1dX2UKGgGR8Be0kWdmQKbaAdLP2gIR0AT9ie/Yao/dX2UKGgGR8Bne4JZ4fOlaAdLcGgIR0AUZRIjGDL9dX2UKGgGR8BdTCA6Mir1aAdLUWgIR0AUu5c1O0swdX2UKGgGR0AF6RdQfp2VaAdLaWgIR0AWQnYxtYSydX2UKGgGR8BYoERSP2f1aAdLRmgIR0AWgZl4C6pYdX2UKGgGR8B5Gff642CNaAdLYGgIR0AW1zMibDuSdX2UKGgGR8B3gVTn7pFDaAdLcWgIR0AXQSmIj4YadX2UKGgGR8A8PYdhiLEUaAdLSWgIR0AXg8nuy/sWdX2UKGgGR0A3Dzollbu/aAdLbGgIR0AX43qAz544dX2UKGgGR8BhMZzBAOawaAdLQ2gIR0AYHsgMc6vJdX2UKGgGR8BaaLNOdoWYaAdLRWgIR0AYX3K0UoKEdX2UKGgGR8BwkYvSMLncaAdLbGgIR0AYz8DSw4bTdX2UKGgGR8Bwfzd56dDqaAdLa2gIR0AZLB7/n4fwdX2UKGgGR8BYWxBE8aGYaAdLV2gIR0AZeq2jO9nLdX2UKGgGR8BoaAqbz9S/aAdLSGgIR0AZuHGjsUqQdX2UKGgGR8BsfuU6gdwOaAdLZWgIR0AbCSs8xKxtdX2UKGgGR8BmVH0ulGgBaAdLPWgIR0AbRLOAy2x6dX2UKGgGR8BCkxri2lVMaAdLS2gIR0AbiAVfu1F6dX2UKGgGR8BnzRLf1pTNaAdLbmgIR0Ab7jfek56udX2UKGgGR8BgMyPQv6CUaAdLWGgIR0AcPYxtYSxrdX2UKGgGR8BYMIjW07bMaAdLY2gIR0AclKHwgDA8dX2UKGgGR8BaKZuEVWS2aAdLVGgIR0Ac6cFyJbdKdX2UKGgGR8BkewQBgeA/aAdLXGgIR0AdOqaPS2H+dX2UKGgGR8BtzFUp/gBLaAdLV2gIR0AdjMlkYoAodX2UKGgGR8B1kKb3Gn4xaAdLXGgIR0Ad3jHXEqDsdX2UKGgGR8BlEEpobn5jaAdLf2gIR0AeU4uK4x1xdX2UKGgGR8BvOd4qwyIpaAdLXmgIR0AfoyEcsDnvdX2UKGgGR8BocSN2ki2VaAdLaGgIR0Af/jQzDXOGdX2UKGgGR8BvGYgmqo60aAdLbWgIR0AgMI42jwhGdX2UKGgGR8BbnOu7pV0caAdLTGgIR0AgUscQyylfdX2UKGgGR8BYGlyR0U48aAdLh2gIR0Agk8cMmWt2dX2UKGgGR8BhEBtFa0QcaAdLT2gIR0Agt5O8CgbqdX2UKGgGR8BXEyTQmeDnaAdLV2gIR0Ag3fzjFQ2udX2UKGgGR8BZAx0+1SflaAdLSGgIR0Ag/Y02tMfzdX2UKGgGR8Bm9szEaVD8aAdLR2gIR0AhHi/fwZwXdX2UKGgGR8BTDQosqaw2aAdLQmgIR0AhPA2ycCo1dX2UKGgGR8BoQGtW+49YaAdLT2gIR0AhXtXxOLzgdX2UKGgGR8BjwnYxtYSyaAdLcmgIR0AiEZAIIF/ydX2UKGgGR8BW5NAkcCHRaAdLQ2gIR0AiMEIw/PgOdX2UKGgGR8Bs3u4gA6uGaAdLXmgIR0AiWcPvrnkldX2UKGgGR8B/R0Bltj0+aAdLamgIR0AikP1ct5D7dX2UKGgGR8BolFJ6IFeOaAdLT2gIR0AitHBk7OmjdX2UKGgGR8Be67WiDdxiaAdLRmgIR0Ai29rXUYsNdX2UKGgGR8BWeFO9FnZkaAdLUGgIR0AjAbsF+uvEdX2UKGgGR8BZqcFUyYXwaAdLXGgIR0AjKyRjjJdTdX2UKGgGR8Bw97Ck43m3aAdLaGgIR0AjXFBppN9IdX2UKGgGR8BT/lFH8TBZaAdLd2gIR0Ajq81XNke7dX2UKGgGR8BY9kQXhwVCaAdLVWgIR0Aj6NwR5C4SdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 16,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRGACL0nOUBauUVuqt10cZswCMA2luY5SKEU3RTjcrxLOA+Ii0mNV2W9YAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": "Generator(PCG64)"
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQYeo9uR5/0Uogj47SHUahLYwDaW5jlIoRD0oSVfwZgNXoEtxLrE992gB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpSKBQfuLKgAdWJ1Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": "Generator(PCG64)"
},
"n_envs": 1,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}