DBusAI commited on
Commit
c437d5e
·
1 Parent(s): 4e90470

ADD PPO model for LunarLander-v2_v3

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
PPO-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a06a6495fef4d4ce02a6a6b2625c0bf9927174290c74ba6cbb798bb5005aa227
3
+ size 438786
PPO-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
PPO-LunarLander-v2/data ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3470a7cdd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3470a7ce60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3470a7cef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3470a7cf80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3470a86050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3470a860e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3470a86170>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3470a86200>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3470a86290>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3470a86320>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3470a863b0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f3470ad6420>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVawAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARTRUxVlJOUjAhuZXRfYXJjaJRdlChLQH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEuAS4BldWV1Lg==",
25
+ "activation_fn": "<class 'torch.nn.modules.activation.SELU'>",
26
+ "net_arch": [
27
+ 64,
28
+ {
29
+ "pi": [
30
+ 64,
31
+ 64
32
+ ],
33
+ "vf": [
34
+ 128,
35
+ 128
36
+ ]
37
+ }
38
+ ]
39
+ },
40
+ "observation_space": {
41
+ ":type:": "<class 'gym.spaces.box.Box'>",
42
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
43
+ "dtype": "float32",
44
+ "_shape": [
45
+ 8
46
+ ],
47
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
48
+ "high": "[inf inf inf inf inf inf inf inf]",
49
+ "bounded_below": "[False False False False False False False False]",
50
+ "bounded_above": "[False False False False False False False False]",
51
+ "_np_random": null
52
+ },
53
+ "action_space": {
54
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
55
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
56
+ "n": 4,
57
+ "_shape": [],
58
+ "dtype": "int64",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 32,
62
+ "num_timesteps": 201216,
63
+ "_total_timesteps": 200000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1651765624.627336,
68
+ "learning_rate": 0.0003,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAPN/q71LDqQ/VsN2vqk8CL8KS6+9pSU1vgAAAAAAAAAAGoqNvcRMyT0ygkE9imi9vgCWxjxUhEa8AAAAAAAAAAAzUxw6pD0lu0Dba7wvFRI9MAVJPLBw8r0AAIA/AACAP81MOjy4eLK7Du7RvX7b9TzseQE9Re7MvQAAgD8AAIA/TXwJvqjJmD69Lsg+oj3YvoW52D12XV0+AAAAAAAAAADNlAe7XHN3ukamLDT/fUQvtAxju9K+rLMAAIA/AACAP9pwEL5RUy0+SjPNPuALwb6xYLs9ONP2PQAAAAAAAAAAAITAvdvJmD9dYBm/EvxWvyv7hL2TeJu+AAAAAAAAAACa+Zi6j9phPRyRMz7OiJi+Oi6hPslxG74AAAAAAAAAAA0GqL3FwvQ+woyiPd17Ir/aHiq+aFcfPgAAAAAAAAAAmgl+u/YAbLpCFOy6b5/VtU0cLLvYFgo6AACAPwAAgD8z5iY96UBCPcifeL5exJG+JnfSvYMgK70AAAAAAAAAAJpxj7srTLQ/OAfjvp2H1b0pcKY7fbPNPQAAAAAAAAAAzYbuPBQahLpWHwS0iUMFr27uAztIhb0zAACAPwAAgD/Ah8s98tMaP7V0zb05FiG/z6PDPWNsHb4AAAAAAAAAADONMjwh84G85rPWvOOEaT1rlXA8azROvAAAgD8AAIA/M8NeO5zztD9mRLA+vZn7Pf7WgLtqtZ+9AAAAAAAAAADN1Qs97LGqucmhK7Tmd3WtpZolO+LooTMAAIA/AACAP5qh4bzOiq4/Jbjevp1B1b4MolQ7kau0vQAAAAAAAAAAOhl5Ph9uJT/aa1i+HLQev28diT48tpa+AAAAAAAAAAAAMYM9X99BP2uT4jyf/Tq/DbCoPbgLUrwAAAAAAAAAADOppLwpaHK6fkOjNQDPBTEn0xW59Ki8tAAAgD8AAIA/zYqfPEj9obpuQkI6d5fJMe4V/LoVZFy5AACAPwAAgD8zADY91GKyPqbIrr01dwa/IKMIOzYcDL0AAAAAAAAAAFCqW77O45w/jZb7vln0Br+x/vq+Z2+HvgAAAAAAAAAAJkQfPum5bj/f7MM+UpwdvwbKqT4jFlk+AAAAAAAAAADm5g0922uWP5jOXj5dVFC/Pa6bPUrRED4AAAAAAAAAAM2MfjwKRw+7mUgsvd12ijzM+aU8iDVvvQAAgD8AAIA/IKmJPvcdgj+NOVQ+p0Ehv1f/CT8IO5+8AAAAAAAAAABNJ8O9FEOxPxDkrL4za8K+DEA3vrMyZr4AAAAAAAAAAMA/Hr4zMnU/a+n5vdyEFr+m0rC+FmWJPAAAAAAAAAAAZvmcPBT4gboSGXqz8fxwr7bonDqxBr4zAACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAABAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
81
+ },
82
+ "_last_original_obs": null,
83
+ "_episode_num": 0,
84
+ "use_sde": false,
85
+ "sde_sample_freq": -1,
86
+ "_current_progress_remaining": -0.006080000000000085,
87
+ "ep_info_buffer": {
88
+ ":type:": "<class 'collections.deque'>",
89
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3Lkw0stuckCUhpRSlIwBbJRL4IwBdJRHQMQlNMAFPi11fZQoaAZoCWgPQwg09E9wsVJyQJSGlFKUaBVLwGgWR0DEJTahQFcIdX2UKGgGaAloD0MIB7EzhY4ic0CUhpRSlGgVS+NoFkdAxCVClY2bX3V9lChoBmgJaA9DCMLdWbttB3JAlIaUUpRoFUvCaBZHQMQlRkAPuoh1fZQoaAZoCWgPQwg1YfvJ2JFwQJSGlFKUaBVLsWgWR0DEJVTCWNWEdX2UKGgGaAloD0MIdOrKZ7nccECUhpRSlGgVS7toFkdAxCVdY4ACGXV9lChoBmgJaA9DCK8I/rcSh3FAlIaUUpRoFUu3aBZHQMQlX48Md951fZQoaAZoCWgPQwjlX8sr1/RxQJSGlFKUaBVLymgWR0DEJV+0mdAgdX2UKGgGaAloD0MIgo5WtSSHc0CUhpRSlGgVS8xoFkdAxCVq8yvcJ3V9lChoBmgJaA9DCBu4A3UKj3NAlIaUUpRoFUvHaBZHQMQlcDmjj711fZQoaAZoCWgPQwgOZhNg2Bh0QJSGlFKUaBVLxWgWR0DEJXBGKAJ+dX2UKGgGaAloD0MI+5P43Inqc0CUhpRSlGgVS/JoFkdAxCWIkM1CPnV9lChoBmgJaA9DCNLhIYzfqnJAlIaUUpRoFUu7aBZHQMQlixoh6jZ1fZQoaAZoCWgPQwjFVPoJp2BwQJSGlFKUaBVLrmgWR0DEJZBbB42TdX2UKGgGaAloD0MIdxVSftKJcECUhpRSlGgVS7hoFkdAxCW4ekHlfnV9lChoBmgJaA9DCBwKn63DxnFAlIaUUpRoFUuraBZHQMQlxQ6hg3N1fZQoaAZoCWgPQwgdPBOaZOtxQJSGlFKUaBVL52gWR0DEJcgfjjrBdX2UKGgGaAloD0MI3XniOZsXc0CUhpRSlGgVS8RoFkdAxCXcauOjqXV9lChoBmgJaA9DCPFHUWduxXJAlIaUUpRoFUvCaBZHQMQl38Npdrx1fZQoaAZoCWgPQwhNMQdBR5VyQJSGlFKUaBVLwWgWR0DEJfGSZBszdX2UKGgGaAloD0MImj+mtWlFc0CUhpRSlGgVS65oFkdAxCX1BbfP5nV9lChoBmgJaA9DCK7wLhfxanJAlIaUUpRoFUudaBZHQMQmAGqgh8p1fZQoaAZoCWgPQwjpSC7/IQ9zQJSGlFKUaBVLtWgWR0DEJhHvc8DCdX2UKGgGaAloD0MIvvkNE80vcECUhpRSlGgVS8FoFkdAxCY0vwEyL3V9lChoBmgJaA9DCIEHBhA+MXJAlIaUUpRoFUu6aBZHQMQmNLmQr+Z1fZQoaAZoCWgPQwgotRfRdppwQJSGlFKUaBVLq2gWR0DEJjaiRGMGdX2UKGgGaAloD0MIv0hoyznfcECUhpRSlGgVS61oFkdAxCY358jRlnV9lChoBmgJaA9DCG0csRbfRHJAlIaUUpRoFUuvaBZHQMQmOwoTfzl1fZQoaAZoCWgPQwg+l6lJMBpxQJSGlFKUaBVLrWgWR0DEJkbhFVkudX2UKGgGaAloD0MI2Xkbmx13c0CUhpRSlGgVS8loFkdAxCZJrHlwLnV9lChoBmgJaA9DCP9AuW2fKnFAlIaUUpRoFUvFaBZHQMQmTO6/Zdx1fZQoaAZoCWgPQwjfGtgqQdJyQJSGlFKUaBVLv2gWR0DEJlMN2C/XdX2UKGgGaAloD0MIC+vGu6O7ckCUhpRSlGgVS8VoFkdAxCZaMNMGo3V9lChoBmgJaA9DCHu7JTlgZ3BAlIaUUpRoFUuxaBZHQMQmYGoBJZp1fZQoaAZoCWgPQwjPg7uztg9xQJSGlFKUaBVLo2gWR0DEJmiAYpDvdX2UKGgGaAloD0MIFHmSdA2ncUCUhpRSlGgVS8VoFkdAxCZtO4XoDHV9lChoBmgJaA9DCLN9yFsuzHJAlIaUUpRoFUvjaBZHQMQmcxNyo4x1fZQoaAZoCWgPQwhCJEOOLUhyQJSGlFKUaBVL3WgWR0DEJnlnAZbZdX2UKGgGaAloD0MI/pqsUU/Jc0CUhpRSlGgVS8BoFkdAxCaA7NB4U3V9lChoBmgJaA9DCGSV0jP9L3FAlIaUUpRoFUu5aBZHQMQmhy7f51x1fZQoaAZoCWgPQwg095DwvSFyQJSGlFKUaBVLx2gWR0DEJooTj/+9dX2UKGgGaAloD0MIqbwd4fRrc0CUhpRSlGgVS8poFkdAxCaYrGza9XV9lChoBmgJaA9DCKon848+hHNAlIaUUpRoFUu2aBZHQMQmnQTdtVJ1fZQoaAZoCWgPQwhRZ+4hYfJyQJSGlFKUaBVL3WgWR0DEJqV1+y7gdX2UKGgGaAloD0MIQxoVONmrcECUhpRSlGgVS6toFkdAxCa6LCvX9XV9lChoBmgJaA9DCJZZhGJrOXFAlIaUUpRoFUukaBZHQMQmvj/uLJl1fZQoaAZoCWgPQwiF7/0NWhJyQJSGlFKUaBVLzmgWR0DEJsRcAzYVdX2UKGgGaAloD0MIsMqFyr8DcUCUhpRSlGgVS7BoFkdAxCbi+dK/VXV9lChoBmgJaA9DCBAC8iXUvnFAlIaUUpRoFUvAaBZHQMQm5IvalDZ1fZQoaAZoCWgPQwhoXg67741xQJSGlFKUaBVLvGgWR0DEJvkyN4qxdX2UKGgGaAloD0MI2v6VleZPdECUhpRSlGgVS/hoFkdAxCb7wjMV13V9lChoBmgJaA9DCK685H9yLHJAlIaUUpRoFUuxaBZHQMQm/d+G47R1fZQoaAZoCWgPQwj3d7ZHb9FwQJSGlFKUaBVLtmgWR0DEJw/6Q/5ddX2UKGgGaAloD0MI+WTFcLVxc0CUhpRSlGgVS81oFkdAxCckNQ0oB3V9lChoBmgJaA9DCKxxNh0BS3JAlIaUUpRoFUuraBZHQMQnLNOM2m51fZQoaAZoCWgPQwgqrb8lwPVyQJSGlFKUaBVLp2gWR0DEJzj850bMdX2UKGgGaAloD0MI4iGMn8Y/ckCUhpRSlGgVS8poFkdAxCc6YvWYnnV9lChoBmgJaA9DCItTrYXZmnBAlIaUUpRoFUu2aBZHQMQnRB6rvLJ1fZQoaAZoCWgPQwioGyjwzu1yQJSGlFKUaBVLwWgWR0DEJ057VrhzdX2UKGgGaAloD0MIe7yQDs98cECUhpRSlGgVS6VoFkdAxCdRd56dD3V9lChoBmgJaA9DCOYg6GgVS3FAlIaUUpRoFUvAaBZHQMQnYj0Dlo11fZQoaAZoCWgPQwjEmPT3UtNvQJSGlFKUaBVLqWgWR0DEJ3KRB/qgdX2UKGgGaAloD0MI7lwY6QU1dECUhpRSlGgVS9hoFkdAxCd0Cz1K5HV9lChoBmgJaA9DCNiBc0aUVHNAlIaUUpRoFUvZaBZHQMQndwMhHLB1fZQoaAZoCWgPQwjEIRtIV2FxQJSGlFKUaBVLyWgWR0DEJ4JBomG/dX2UKGgGaAloD0MIN+LJbmYhc0CUhpRSlGgVS9JoFkdAxCeB3fyf+XV9lChoBmgJaA9DCLFvJxFhQXJAlIaUUpRoFUvCaBZHQMQnhuzyBkJ1fZQoaAZoCWgPQwifkJ23cYVxQJSGlFKUaBVL02gWR0DEJ4k8zQ/pdX2UKGgGaAloD0MIODKP/EH3ckCUhpRSlGgVS8RoFkdAxCeT4MWoFXV9lChoBmgJaA9DCElJD0Pr/HBAlIaUUpRoFUu+aBZHQMQnoIi1Rch1fZQoaAZoCWgPQwhUjzS4bVZyQJSGlFKUaBVLsWgWR0DEJ6ExXXAedX2UKGgGaAloD0MIvFzEd2J1ckCUhpRSlGgVS9VoFkdAxCemzBRAKXV9lChoBmgJaA9DCGstzEL7g3JAlIaUUpRoFUvBaBZHQMQnqJuVHFx1fZQoaAZoCWgPQwjfwU8cwNxxQJSGlFKUaBVLymgWR0DEJ6tpTMq0dX2UKGgGaAloD0MI1v7O9mg0ckCUhpRSlGgVS6toFkdAxCe+0w8GLXV9lChoBmgJaA9DCH/bEyQ2SXNAlIaUUpRoFUu/aBZHQMQnwq4x1xN1fZQoaAZoCWgPQwiq8j0jUbFwQJSGlFKUaBVLxWgWR0DEJ8Ky0KJEdX2UKGgGaAloD0MIt+9Rf73EcUCUhpRSlGgVS6toFkdAxCfE11nuiXV9lChoBmgJaA9DCCNNvAP8x3BAlIaUUpRoFUu7aBZHQMQn0IA4n4R1fZQoaAZoCWgPQwgoYabtX4BxQJSGlFKUaBVLnGgWR0DEJ+NKEnLJdX2UKGgGaAloD0MIQBaiQ6DbcECUhpRSlGgVS51oFkdAxCfi7L+xW3V9lChoBmgJaA9DCPYmhuSkFnJAlIaUUpRoFUuvaBZHQMQn+jujRD11fZQoaAZoCWgPQwibrbzkf+RwQJSGlFKUaBVLvGgWR0DEJ/oHmig1dX2UKGgGaAloD0MIZd6q65CXckCUhpRSlGgVS75oFkdAxCf7opx3mnV9lChoBmgJaA9DCJ6ayw3GaXBAlIaUUpRoFUuvaBZHQMQoLIvJzT51fZQoaAZoCWgPQwiR7ucUZM5yQJSGlFKUaBVLw2gWR0DEKC5/EwWWdX2UKGgGaAloD0MINfEO8CTXcECUhpRSlGgVS7BoFkdAxCg62F36h3V9lChoBmgJaA9DCGUAqOIGm3JAlIaUUpRoFUuvaBZHQMQoRGzKLbZ1fZQoaAZoCWgPQwhKfy+FB4NzQJSGlFKUaBVLxmgWR0DEKEgzN2TxdX2UKGgGaAloD0MIKO/jaE7pcECUhpRSlGgVS65oFkdAxChQRcNYsHV9lChoBmgJaA9DCGItPgVAUnNAlIaUUpRoFUvAaBZHQMQoVNxVAA11fZQoaAZoCWgPQwjf4uE9RwJzQJSGlFKUaBVLwGgWR0DEKGgxnFo+dX2UKGgGaAloD0MImntI+N5QcUCUhpRSlGgVS6poFkdAxCht/echDHV9lChoBmgJaA9DCLFQa5o3VnBAlIaUUpRoFUu8aBZHQMQod+FtbcJ1fZQoaAZoCWgPQwhK0F/o0YlwQJSGlFKUaBVLnWgWR0DEKH93dKukdX2UKGgGaAloD0MIQ+Vfy6u7cECUhpRSlGgVS5poFkdAxCiZvG6wuHV9lChoBmgJaA9DCOyhfaygEnFAlIaUUpRoFUuzaBZHQMQonKzZ6D51fZQoaAZoCWgPQwh4liAjIF5vQJSGlFKUaBVLx2gWR0DEKK7BInSfdX2UKGgGaAloD0MIgPPixNfTckCUhpRSlGgVS8NoFkdAxCi53HJcPnV9lChoBmgJaA9DCFFsBU0LA3JAlIaUUpRoFUu+aBZHQMQouezUqhF1ZS4="
90
+ },
91
+ "ep_success_buffer": {
92
+ ":type:": "<class 'collections.deque'>",
93
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
94
+ },
95
+ "_n_updates": 288,
96
+ "n_steps": 1048,
97
+ "gamma": 0.999,
98
+ "gae_lambda": 0.98,
99
+ "ent_coef": 0.01,
100
+ "vf_coef": 0.5,
101
+ "max_grad_norm": 0.5,
102
+ "batch_size": 64,
103
+ "n_epochs": 4,
104
+ "clip_range": {
105
+ ":type:": "<class 'function'>",
106
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
107
+ },
108
+ "clip_range_vf": null,
109
+ "normalize_advantage": true,
110
+ "target_kl": null
111
+ }
PPO-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c53c86fc239330e29da3c24a4e2f90a266291bdfc53800dadb914937483eff2
3
+ size 280465
PPO-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dff2a41c60bf2379c33737efceaedfdaec02688a3e43ff19f91b119d0607c974
3
+ size 141179
PPO-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 296.36 +/- 13.54
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3470a7cdd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3470a7ce60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3470a7cef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3470a7cf80>", "_build": "<function ActorCriticPolicy._build at 0x7f3470a86050>", "forward": "<function ActorCriticPolicy.forward at 0x7f3470a860e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3470a86170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3470a86200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3470a86290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3470a86320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3470a863b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3470ad6420>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVawAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARTRUxVlJOUjAhuZXRfYXJjaJRdlChLQH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEuAS4BldWV1Lg==", "activation_fn": "<class 'torch.nn.modules.activation.SELU'>", "net_arch": [64, {"pi": [64, 64], "vf": [128, 128]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 201216, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651765624.627336, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAPN/q71LDqQ/VsN2vqk8CL8KS6+9pSU1vgAAAAAAAAAAGoqNvcRMyT0ygkE9imi9vgCWxjxUhEa8AAAAAAAAAAAzUxw6pD0lu0Dba7wvFRI9MAVJPLBw8r0AAIA/AACAP81MOjy4eLK7Du7RvX7b9TzseQE9Re7MvQAAgD8AAIA/TXwJvqjJmD69Lsg+oj3YvoW52D12XV0+AAAAAAAAAADNlAe7XHN3ukamLDT/fUQvtAxju9K+rLMAAIA/AACAP9pwEL5RUy0+SjPNPuALwb6xYLs9ONP2PQAAAAAAAAAAAITAvdvJmD9dYBm/EvxWvyv7hL2TeJu+AAAAAAAAAACa+Zi6j9phPRyRMz7OiJi+Oi6hPslxG74AAAAAAAAAAA0GqL3FwvQ+woyiPd17Ir/aHiq+aFcfPgAAAAAAAAAAmgl+u/YAbLpCFOy6b5/VtU0cLLvYFgo6AACAPwAAgD8z5iY96UBCPcifeL5exJG+JnfSvYMgK70AAAAAAAAAAJpxj7srTLQ/OAfjvp2H1b0pcKY7fbPNPQAAAAAAAAAAzYbuPBQahLpWHwS0iUMFr27uAztIhb0zAACAPwAAgD/Ah8s98tMaP7V0zb05FiG/z6PDPWNsHb4AAAAAAAAAADONMjwh84G85rPWvOOEaT1rlXA8azROvAAAgD8AAIA/M8NeO5zztD9mRLA+vZn7Pf7WgLtqtZ+9AAAAAAAAAADN1Qs97LGqucmhK7Tmd3WtpZolO+LooTMAAIA/AACAP5qh4bzOiq4/Jbjevp1B1b4MolQ7kau0vQAAAAAAAAAAOhl5Ph9uJT/aa1i+HLQev28diT48tpa+AAAAAAAAAAAAMYM9X99BP2uT4jyf/Tq/DbCoPbgLUrwAAAAAAAAAADOppLwpaHK6fkOjNQDPBTEn0xW59Ki8tAAAgD8AAIA/zYqfPEj9obpuQkI6d5fJMe4V/LoVZFy5AACAPwAAgD8zADY91GKyPqbIrr01dwa/IKMIOzYcDL0AAAAAAAAAAFCqW77O45w/jZb7vln0Br+x/vq+Z2+HvgAAAAAAAAAAJkQfPum5bj/f7MM+UpwdvwbKqT4jFlk+AAAAAAAAAADm5g0922uWP5jOXj5dVFC/Pa6bPUrRED4AAAAAAAAAAM2MfjwKRw+7mUgsvd12ijzM+aU8iDVvvQAAgD8AAIA/IKmJPvcdgj+NOVQ+p0Ehv1f/CT8IO5+8AAAAAAAAAABNJ8O9FEOxPxDkrL4za8K+DEA3vrMyZr4AAAAAAAAAAMA/Hr4zMnU/a+n5vdyEFr+m0rC+FmWJPAAAAAAAAAAAZvmcPBT4gboSGXqz8fxwr7bonDqxBr4zAACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAABAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.006080000000000085, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3Lkw0stuckCUhpRSlIwBbJRL4IwBdJRHQMQlNMAFPi11fZQoaAZoCWgPQwg09E9wsVJyQJSGlFKUaBVLwGgWR0DEJTahQFcIdX2UKGgGaAloD0MIB7EzhY4ic0CUhpRSlGgVS+NoFkdAxCVClY2bX3V9lChoBmgJaA9DCMLdWbttB3JAlIaUUpRoFUvCaBZHQMQlRkAPuoh1fZQoaAZoCWgPQwg1YfvJ2JFwQJSGlFKUaBVLsWgWR0DEJVTCWNWEdX2UKGgGaAloD0MIdOrKZ7nccECUhpRSlGgVS7toFkdAxCVdY4ACGXV9lChoBmgJaA9DCK8I/rcSh3FAlIaUUpRoFUu3aBZHQMQlX48Md951fZQoaAZoCWgPQwjlX8sr1/RxQJSGlFKUaBVLymgWR0DEJV+0mdAgdX2UKGgGaAloD0MIgo5WtSSHc0CUhpRSlGgVS8xoFkdAxCVq8yvcJ3V9lChoBmgJaA9DCBu4A3UKj3NAlIaUUpRoFUvHaBZHQMQlcDmjj711fZQoaAZoCWgPQwgOZhNg2Bh0QJSGlFKUaBVLxWgWR0DEJXBGKAJ+dX2UKGgGaAloD0MI+5P43Inqc0CUhpRSlGgVS/JoFkdAxCWIkM1CPnV9lChoBmgJaA9DCNLhIYzfqnJAlIaUUpRoFUu7aBZHQMQlixoh6jZ1fZQoaAZoCWgPQwjFVPoJp2BwQJSGlFKUaBVLrmgWR0DEJZBbB42TdX2UKGgGaAloD0MIdxVSftKJcECUhpRSlGgVS7hoFkdAxCW4ekHlfnV9lChoBmgJaA9DCBwKn63DxnFAlIaUUpRoFUuraBZHQMQlxQ6hg3N1fZQoaAZoCWgPQwgdPBOaZOtxQJSGlFKUaBVL52gWR0DEJcgfjjrBdX2UKGgGaAloD0MI3XniOZsXc0CUhpRSlGgVS8RoFkdAxCXcauOjqXV9lChoBmgJaA9DCPFHUWduxXJAlIaUUpRoFUvCaBZHQMQl38Npdrx1fZQoaAZoCWgPQwhNMQdBR5VyQJSGlFKUaBVLwWgWR0DEJfGSZBszdX2UKGgGaAloD0MImj+mtWlFc0CUhpRSlGgVS65oFkdAxCX1BbfP5nV9lChoBmgJaA9DCK7wLhfxanJAlIaUUpRoFUudaBZHQMQmAGqgh8p1fZQoaAZoCWgPQwjpSC7/IQ9zQJSGlFKUaBVLtWgWR0DEJhHvc8DCdX2UKGgGaAloD0MIvvkNE80vcECUhpRSlGgVS8FoFkdAxCY0vwEyL3V9lChoBmgJaA9DCIEHBhA+MXJAlIaUUpRoFUu6aBZHQMQmNLmQr+Z1fZQoaAZoCWgPQwgotRfRdppwQJSGlFKUaBVLq2gWR0DEJjaiRGMGdX2UKGgGaAloD0MIv0hoyznfcECUhpRSlGgVS61oFkdAxCY358jRlnV9lChoBmgJaA9DCG0csRbfRHJAlIaUUpRoFUuvaBZHQMQmOwoTfzl1fZQoaAZoCWgPQwg+l6lJMBpxQJSGlFKUaBVLrWgWR0DEJkbhFVkudX2UKGgGaAloD0MI2Xkbmx13c0CUhpRSlGgVS8loFkdAxCZJrHlwLnV9lChoBmgJaA9DCP9AuW2fKnFAlIaUUpRoFUvFaBZHQMQmTO6/Zdx1fZQoaAZoCWgPQwjfGtgqQdJyQJSGlFKUaBVLv2gWR0DEJlMN2C/XdX2UKGgGaAloD0MIC+vGu6O7ckCUhpRSlGgVS8VoFkdAxCZaMNMGo3V9lChoBmgJaA9DCHu7JTlgZ3BAlIaUUpRoFUuxaBZHQMQmYGoBJZp1fZQoaAZoCWgPQwjPg7uztg9xQJSGlFKUaBVLo2gWR0DEJmiAYpDvdX2UKGgGaAloD0MIFHmSdA2ncUCUhpRSlGgVS8VoFkdAxCZtO4XoDHV9lChoBmgJaA9DCLN9yFsuzHJAlIaUUpRoFUvjaBZHQMQmcxNyo4x1fZQoaAZoCWgPQwhCJEOOLUhyQJSGlFKUaBVL3WgWR0DEJnlnAZbZdX2UKGgGaAloD0MI/pqsUU/Jc0CUhpRSlGgVS8BoFkdAxCaA7NB4U3V9lChoBmgJaA9DCGSV0jP9L3FAlIaUUpRoFUu5aBZHQMQmhy7f51x1fZQoaAZoCWgPQwg095DwvSFyQJSGlFKUaBVLx2gWR0DEJooTj/+9dX2UKGgGaAloD0MIqbwd4fRrc0CUhpRSlGgVS8poFkdAxCaYrGza9XV9lChoBmgJaA9DCKon848+hHNAlIaUUpRoFUu2aBZHQMQmnQTdtVJ1fZQoaAZoCWgPQwhRZ+4hYfJyQJSGlFKUaBVL3WgWR0DEJqV1+y7gdX2UKGgGaAloD0MIQxoVONmrcECUhpRSlGgVS6toFkdAxCa6LCvX9XV9lChoBmgJaA9DCJZZhGJrOXFAlIaUUpRoFUukaBZHQMQmvj/uLJl1fZQoaAZoCWgPQwiF7/0NWhJyQJSGlFKUaBVLzmgWR0DEJsRcAzYVdX2UKGgGaAloD0MIsMqFyr8DcUCUhpRSlGgVS7BoFkdAxCbi+dK/VXV9lChoBmgJaA9DCBAC8iXUvnFAlIaUUpRoFUvAaBZHQMQm5IvalDZ1fZQoaAZoCWgPQwhoXg67741xQJSGlFKUaBVLvGgWR0DEJvkyN4qxdX2UKGgGaAloD0MI2v6VleZPdECUhpRSlGgVS/hoFkdAxCb7wjMV13V9lChoBmgJaA9DCK685H9yLHJAlIaUUpRoFUuxaBZHQMQm/d+G47R1fZQoaAZoCWgPQwj3d7ZHb9FwQJSGlFKUaBVLtmgWR0DEJw/6Q/5ddX2UKGgGaAloD0MI+WTFcLVxc0CUhpRSlGgVS81oFkdAxCckNQ0oB3V9lChoBmgJaA9DCKxxNh0BS3JAlIaUUpRoFUuraBZHQMQnLNOM2m51fZQoaAZoCWgPQwgqrb8lwPVyQJSGlFKUaBVLp2gWR0DEJzj850bMdX2UKGgGaAloD0MI4iGMn8Y/ckCUhpRSlGgVS8poFkdAxCc6YvWYnnV9lChoBmgJaA9DCItTrYXZmnBAlIaUUpRoFUu2aBZHQMQnRB6rvLJ1fZQoaAZoCWgPQwioGyjwzu1yQJSGlFKUaBVLwWgWR0DEJ057VrhzdX2UKGgGaAloD0MIe7yQDs98cECUhpRSlGgVS6VoFkdAxCdRd56dD3V9lChoBmgJaA9DCOYg6GgVS3FAlIaUUpRoFUvAaBZHQMQnYj0Dlo11fZQoaAZoCWgPQwjEmPT3UtNvQJSGlFKUaBVLqWgWR0DEJ3KRB/qgdX2UKGgGaAloD0MI7lwY6QU1dECUhpRSlGgVS9hoFkdAxCd0Cz1K5HV9lChoBmgJaA9DCNiBc0aUVHNAlIaUUpRoFUvZaBZHQMQndwMhHLB1fZQoaAZoCWgPQwjEIRtIV2FxQJSGlFKUaBVLyWgWR0DEJ4JBomG/dX2UKGgGaAloD0MIN+LJbmYhc0CUhpRSlGgVS9JoFkdAxCeB3fyf+XV9lChoBmgJaA9DCLFvJxFhQXJAlIaUUpRoFUvCaBZHQMQnhuzyBkJ1fZQoaAZoCWgPQwifkJ23cYVxQJSGlFKUaBVL02gWR0DEJ4k8zQ/pdX2UKGgGaAloD0MIODKP/EH3ckCUhpRSlGgVS8RoFkdAxCeT4MWoFXV9lChoBmgJaA9DCElJD0Pr/HBAlIaUUpRoFUu+aBZHQMQnoIi1Rch1fZQoaAZoCWgPQwhUjzS4bVZyQJSGlFKUaBVLsWgWR0DEJ6ExXXAedX2UKGgGaAloD0MIvFzEd2J1ckCUhpRSlGgVS9VoFkdAxCemzBRAKXV9lChoBmgJaA9DCGstzEL7g3JAlIaUUpRoFUvBaBZHQMQnqJuVHFx1fZQoaAZoCWgPQwjfwU8cwNxxQJSGlFKUaBVLymgWR0DEJ6tpTMq0dX2UKGgGaAloD0MI1v7O9mg0ckCUhpRSlGgVS6toFkdAxCe+0w8GLXV9lChoBmgJaA9DCH/bEyQ2SXNAlIaUUpRoFUu/aBZHQMQnwq4x1xN1fZQoaAZoCWgPQwiq8j0jUbFwQJSGlFKUaBVLxWgWR0DEJ8Ky0KJEdX2UKGgGaAloD0MIt+9Rf73EcUCUhpRSlGgVS6toFkdAxCfE11nuiXV9lChoBmgJaA9DCCNNvAP8x3BAlIaUUpRoFUu7aBZHQMQn0IA4n4R1fZQoaAZoCWgPQwgoYabtX4BxQJSGlFKUaBVLnGgWR0DEJ+NKEnLJdX2UKGgGaAloD0MIQBaiQ6DbcECUhpRSlGgVS51oFkdAxCfi7L+xW3V9lChoBmgJaA9DCPYmhuSkFnJAlIaUUpRoFUuvaBZHQMQn+jujRD11fZQoaAZoCWgPQwibrbzkf+RwQJSGlFKUaBVLvGgWR0DEJ/oHmig1dX2UKGgGaAloD0MIZd6q65CXckCUhpRSlGgVS75oFkdAxCf7opx3mnV9lChoBmgJaA9DCJ6ayw3GaXBAlIaUUpRoFUuvaBZHQMQoLIvJzT51fZQoaAZoCWgPQwiR7ucUZM5yQJSGlFKUaBVLw2gWR0DEKC5/EwWWdX2UKGgGaAloD0MINfEO8CTXcECUhpRSlGgVS7BoFkdAxCg62F36h3V9lChoBmgJaA9DCGUAqOIGm3JAlIaUUpRoFUuvaBZHQMQoRGzKLbZ1fZQoaAZoCWgPQwhKfy+FB4NzQJSGlFKUaBVLxmgWR0DEKEgzN2TxdX2UKGgGaAloD0MIKO/jaE7pcECUhpRSlGgVS65oFkdAxChQRcNYsHV9lChoBmgJaA9DCGItPgVAUnNAlIaUUpRoFUvAaBZHQMQoVNxVAA11fZQoaAZoCWgPQwjf4uE9RwJzQJSGlFKUaBVLwGgWR0DEKGgxnFo+dX2UKGgGaAloD0MImntI+N5QcUCUhpRSlGgVS6poFkdAxCht/echDHV9lChoBmgJaA9DCLFQa5o3VnBAlIaUUpRoFUu8aBZHQMQod+FtbcJ1fZQoaAZoCWgPQwhK0F/o0YlwQJSGlFKUaBVLnWgWR0DEKH93dKukdX2UKGgGaAloD0MIQ+Vfy6u7cECUhpRSlGgVS5poFkdAxCiZvG6wuHV9lChoBmgJaA9DCOyhfaygEnFAlIaUUpRoFUuzaBZHQMQonKzZ6D51fZQoaAZoCWgPQwh4liAjIF5vQJSGlFKUaBVLx2gWR0DEKK7BInSfdX2UKGgGaAloD0MIgPPixNfTckCUhpRSlGgVS8NoFkdAxCi53HJcPnV9lChoBmgJaA9DCFFsBU0LA3JAlIaUUpRoFUu+aBZHQMQouezUqhF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 288, "n_steps": 1048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b024d55a9a6097a4fb175643c6d233db010fba07b1a2fae692e701ac6925d12
3
+ size 180348
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 296.3646097727046, "std_reward": 13.541001834239337, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T15:55:14.376078"}