Maltehb commited on
Commit
2d3a6b2
·
1 Parent(s): d854d60

added training docs

Browse files
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Dan Saattrup Nielsen
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
continue_run_mlm_flax_stream.sh ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export MODEL_DIR=/home/Z6HJB/roberta-large-scandi/roberta-base-scandinavian/
2
+
3
+ source /home/Z6HJB/test/bin/activate
4
+
5
+ python3 ./src/run_mlm_flax_stream.py \
6
+ --model_name_or_path="${MODEL_DIR}" \
7
+ --output_dir="${MODEL_DIR}" \
8
+ --tokenizer_name="${MODEL_DIR}" \
9
+ --dataset_name="mc4" \
10
+ --dataset_config_name="unshuffled_deduplicated_en" \
11
+ --max_seq_length="514" \
12
+ --per_device_train_batch_size="32" \
13
+ --per_device_eval_batch_size="32" \
14
+ --learning_rate="3e-4" \
15
+ --warmup_steps="1000" \
16
+ --overwrite_output_dir \
17
+ --adam_beta1="0.9" \
18
+ --adam_beta2="0.98" \
19
+ --num_train_steps="100000" \
20
+ --num_eval_samples="5000" \
21
+ --save_steps="1000" \
22
+ --logging_steps="250" \
23
+ --eval_steps="1000" \
24
+ #--push_to_hub \
25
+ #--config_name="${MODEL_DIR}" \
26
+ #--model_type="roberta" \
makefile ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ train:
2
+ python3 ./src/run_mlm_flax.py \
3
+ --output_dir="." \
4
+ --model_type="roberta" \
5
+ --config_name="." \
6
+ --tokenizer_name="." \
7
+ --max_seq_length="128" \
8
+ --weight_decay="0.01" \
9
+ --per_device_train_batch_size="128" \
10
+ --per_device_eval_batch_size="128" \
11
+ --learning_rate="3e-4" \
12
+ --warmup_steps="1000" \
13
+ --overwrite_output_dir \
14
+ --pad_to_max_length \
15
+ --num_train_epochs="18" \
16
+ --adam_beta1="0.9" \
17
+ --adam_beta2="0.98" \
18
+ --push_to_hub
md_logs/train_tokenizer.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Setting up a Google Cloud TPU VM for training a tokenizer
2
+
3
+ ## TPU VM Configurations
4
+ To start off follow the guide from the Flax/JAX community week 2021 [here](https://github.com/huggingface/transformers/tree/master/examples/research_projects/jax-projects#how-to-setup-tpu-vm), but **NOTE** modify all the `pip` commands to `pip3`.
5
+
6
+ Some might encounter this error message:
7
+ ```
8
+ Building wheel for jax (setup.py) ... error
9
+ ERROR: Command errored out with exit status 1:
10
+ command: /home/patrick/patrick/bin/python3 -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-lwseckn1/jax/setup.py'"'"'; __file__='"'"'/tmp/pip-install-lwseckn1/jax/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' bdist_wheel -d /tmp/pip-wheel-pydotzlo
11
+ cwd: /tmp/pip-install-lwseckn1/jax/
12
+ Complete output (6 lines):
13
+ usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
14
+ or: setup.py --help [cmd1 cmd2 ...]
15
+ or: setup.py --help-commands
16
+ or: setup.py cmd --help
17
+
18
+ error: invalid command 'bdist_wheel'
19
+ ----------------------------------------
20
+ ERROR: Failed building wheel for jax
21
+ ```
22
+
23
+ If encountering the error message run the following commands:
24
+ ```
25
+ pip3 install --upgrade clu
26
+ pip3 install "jax[tpu]>=0.2.16" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
27
+ ```
28
+
29
+ Then give your user sudo rights:
30
+ ```bash
31
+ chmod a+rwx /tmp/*
32
+ chmod a+rwx /tmp/tpu_logs/* # Just to be sure ;-)
33
+ ```
34
+
35
+ Afterwards you can verify the installation by either running the following script:
36
+
37
+ ```python
38
+ from transformers import FlaxRobertaModel, RobertaTokenizerFast
39
+ from datasets import load_dataset
40
+ import jax
41
+
42
+ dataset = load_dataset('oscar', "unshuffled_deduplicated_en", split='train', streaming=True)
43
+
44
+ dummy_input = next(iter(dataset))["text"]
45
+
46
+ tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
47
+ input_ids = tokenizer(dummy_input, return_tensors="np").input_ids[:, :10]
48
+
49
+ model = FlaxRobertaModel.from_pretrained("julien-c/dummy-unknown")
50
+
51
+ # run a forward pass, should return an object `FlaxBaseModelOutputWithPooling`
52
+ model(input_ids)
53
+ ```
54
+
55
+ Or by running the following `python` commands:
56
+ ```python
57
+ import jax
58
+ jax.devices()
59
+ ```
60
+
61
+ ## Training the tokenizer
62
+ To train the tokenizer run the `train_tokenizer.py` script:
63
+ ```bash
64
+ python3 train_tokenizer.py
65
+ ```
66
+
67
+ ### Problems while developing the script:
68
+ - Loading the '*mc4*' dataset using the `load_dataset()` from HugginFace's dataset package `datasets` was not able to load multiple language in one line of code, as otherwise specified [here](https://huggingface.co/datasets/mc4). It was thus chosen to load each language and concatenate them.
69
+ - Furthermore, it seems that even though you predefine a subset-split using the `split` argument, the entire dataset still needs to be downloaded.
70
+ - Some bug occured when downloading the danish dataset, and we then had to force a redownload to mitigate the bug, and make the VM download it.
run_mlm_flax_stream.sh ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export MODEL_DIR=/home/Z6HJB/roberta-large-scandi/roberta-base-scandinavian/
2
+
3
+ source /home/Z6HJB/test/bin/activate
4
+
5
+ python3 ./src/run_mlm_flax_stream.py \
6
+ --config_name="${MODEL_DIR}" \
7
+ --output_dir="${MODEL_DIR}" \
8
+ --tokenizer_name="${MODEL_DIR}" \
9
+ --model_type="roberta" \
10
+ --dataset_name="mc4" \
11
+ --dataset_config_name="unshuffled_deduplicated_en" \
12
+ --max_seq_length="128" \
13
+ --per_device_train_batch_size="128" \
14
+ --per_device_eval_batch_size="128" \
15
+ --learning_rate="3e-4" \
16
+ --warmup_steps="1000" \
17
+ --overwrite_output_dir \
18
+ --adam_beta1="0.9" \
19
+ --adam_beta2="0.98" \
20
+ --num_train_steps="300000" \
21
+ --num_eval_samples="5000" \
22
+ --save_steps="1000" \
23
+ --logging_steps="250" \
24
+ --eval_steps="1000" \
25
+ #--push_to_hub \ currently results in this error: ValueError: If not specifying `clone_from`, you need to pass Repository a valid git clone.
26
+ #--model_name_or_path="${MODEL_DIR}" \ used to continue pretrained
src/config.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ '''Create the configuration for the model'''
2
+
3
+ from transformers import RobertaConfig
4
+ from .utils import model_dir
5
+
6
+ # Currently it merely copies the `roberta-base` config, but we can change this
7
+ # of course
8
+ config = RobertaConfig.from_pretrained("roberta-base")
9
+ config.save_pretrained(model_dir)
src/gigaword.py ADDED
@@ -0,0 +1 @@
 
 
1
+ '''Functions and classes for loading/streaming the relevant GigaWord datasets'''
src/mc4.py ADDED
@@ -0,0 +1 @@
 
 
1
+ '''Functions and classes for loading/streaming the relevant mC4 datasets'''
src/run_mlm_flax_stream.py ADDED
@@ -0,0 +1,635 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
18
+ text file or a dataset.
19
+ Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
+ https://huggingface.co/models?filter=masked-lm
21
+ """
22
+ import logging
23
+ import os
24
+ import sys
25
+ import time
26
+ from collections import defaultdict
27
+ from dataclasses import dataclass, field
28
+
29
+ # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
30
+ from pathlib import Path
31
+ from typing import Dict, List, Optional, Tuple
32
+
33
+ import datasets
34
+ import numpy as np
35
+ from datasets import load_dataset, interleave_datasets
36
+ from tqdm import tqdm
37
+
38
+ import flax
39
+ import jax
40
+ import jax.numpy as jnp
41
+ import optax
42
+ from flax import jax_utils, traverse_util
43
+ from flax.training import train_state
44
+ from flax.training.common_utils import get_metrics, onehot, shard
45
+ from transformers import (
46
+ CONFIG_MAPPING,
47
+ FLAX_MODEL_FOR_MASKED_LM_MAPPING,
48
+ AutoConfig,
49
+ AutoTokenizer,
50
+ FlaxAutoModelForMaskedLM,
51
+ HfArgumentParser,
52
+ PreTrainedTokenizerBase,
53
+ TensorType,
54
+ TrainingArguments,
55
+ is_tensorboard_available,
56
+ set_seed,
57
+ )
58
+
59
+
60
+ if datasets.__version__ <= "1.8.0":
61
+ raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming")
62
+
63
+
64
+ MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
65
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
66
+
67
+
68
+ @dataclass
69
+ class ModelArguments:
70
+ """
71
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
72
+ """
73
+
74
+ model_name_or_path: Optional[str] = field(
75
+ default=None,
76
+ metadata={
77
+ "help": "The model checkpoint for weights initialization."
78
+ "Don't set if you want to train a model from scratch."
79
+ },
80
+ )
81
+ model_type: Optional[str] = field(
82
+ default=None,
83
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
84
+ )
85
+ config_name: Optional[str] = field(
86
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
87
+ )
88
+ tokenizer_name: Optional[str] = field(
89
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
90
+ )
91
+ cache_dir: Optional[str] = field(
92
+ default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
93
+ )
94
+ use_fast_tokenizer: bool = field(
95
+ default=True,
96
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
97
+ )
98
+ dtype: Optional[str] = field(
99
+ default="float32",
100
+ metadata={
101
+ "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
102
+ },
103
+ )
104
+
105
+
106
+ @dataclass
107
+ class DataTrainingArguments:
108
+ """
109
+ Arguments pertaining to what data we are going to input our model for training and eval.
110
+ """
111
+
112
+ dataset_name: Optional[str] = field(
113
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
114
+ )
115
+ dataset_config_name: Optional[str] = field(
116
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
117
+ )
118
+ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
119
+ validation_file: Optional[str] = field(
120
+ default=None,
121
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
122
+ )
123
+ train_ref_file: Optional[str] = field(
124
+ default=None,
125
+ metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
126
+ )
127
+ validation_ref_file: Optional[str] = field(
128
+ default=None,
129
+ metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
130
+ )
131
+ overwrite_cache: bool = field(
132
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
133
+ )
134
+ validation_split_percentage: Optional[int] = field(
135
+ default=5,
136
+ metadata={
137
+ "help": "The percentage of the train set used as validation set in case there's no validation split"
138
+ },
139
+ )
140
+ max_seq_length: Optional[int] = field(
141
+ default=None,
142
+ metadata={
143
+ "help": "The maximum total input sequence length after tokenization. Sequences longer "
144
+ "than this will be truncated. Default to the max input length of the model."
145
+ },
146
+ )
147
+ preprocessing_num_workers: Optional[int] = field(
148
+ default=None,
149
+ metadata={"help": "The number of processes to use for the preprocessing."},
150
+ )
151
+ mlm_probability: float = field(
152
+ default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
153
+ )
154
+ pad_to_max_length: bool = field(
155
+ default=False,
156
+ metadata={
157
+ "help": "Whether to pad all samples to `max_seq_length`. "
158
+ "If False, will pad the samples dynamically when batching to the maximum length in the batch."
159
+ },
160
+ )
161
+ line_by_line: bool = field(
162
+ default=False,
163
+ metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
164
+ )
165
+ text_column_name: str = field(
166
+ default="text", metadata={"help": "The name of the column to retrieve the training text."}
167
+ )
168
+ shuffle_buffer_size: int = field(
169
+ default=10000, metadata={"help": "The number of examples to pre-load for shuffling."}
170
+ )
171
+ num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."})
172
+ num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"})
173
+
174
+ def __post_init__(self):
175
+ if self.dataset_name is None and self.train_file is None and self.validation_file is None:
176
+ raise ValueError("Need either a dataset name or a training/validation file.")
177
+ else:
178
+ if self.train_file is not None:
179
+ extension = self.train_file.split(".")[-1]
180
+ assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
181
+ if self.validation_file is not None:
182
+ extension = self.validation_file.split(".")[-1]
183
+ assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
184
+
185
+
186
+ @flax.struct.dataclass
187
+ class FlaxDataCollatorForLanguageModeling:
188
+ """
189
+ Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
190
+ are not all of the same length.
191
+ Args:
192
+ tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
193
+ The tokenizer used for encoding the data.
194
+ mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
195
+ The probability with which to (randomly) mask tokens in the input.
196
+ .. note::
197
+ For best performance, this data collator should be used with a dataset having items that are dictionaries or
198
+ BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
199
+ :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
200
+ argument :obj:`return_special_tokens_mask=True`.
201
+ """
202
+
203
+ tokenizer: PreTrainedTokenizerBase
204
+ mlm_probability: float = 0.15
205
+
206
+ def __post_init__(self):
207
+ if self.tokenizer.mask_token is None:
208
+ raise ValueError(
209
+ "This tokenizer does not have a mask token which is necessary for masked language modeling. "
210
+ "You should pass `mlm=False` to train on causal language modeling instead."
211
+ )
212
+
213
+ def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]:
214
+ # Handle dict or lists with proper padding and conversion to tensor.
215
+ batch = self.tokenizer.pad(examples, return_tensors=TensorType.NUMPY)
216
+
217
+ # If special token mask has been preprocessed, pop it from the dict.
218
+ special_tokens_mask = batch.pop("special_tokens_mask", None)
219
+
220
+ batch["input_ids"], batch["labels"] = self.mask_tokens(
221
+ batch["input_ids"], special_tokens_mask=special_tokens_mask
222
+ )
223
+ return batch
224
+
225
+ def mask_tokens(
226
+ self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
227
+ ) -> Tuple[jnp.ndarray, jnp.ndarray]:
228
+ """
229
+ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
230
+ """
231
+ labels = inputs.copy()
232
+ # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
233
+ probability_matrix = np.full(labels.shape, self.mlm_probability)
234
+ special_tokens_mask = special_tokens_mask.astype("bool")
235
+
236
+ probability_matrix[special_tokens_mask] = 0.0
237
+ masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
238
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens
239
+
240
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
241
+ indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
242
+ inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
243
+
244
+ # 10% of the time, we replace masked input tokens with random word
245
+ indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
246
+ indices_random &= masked_indices & ~indices_replaced
247
+
248
+ random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
249
+ inputs[indices_random] = random_words[indices_random]
250
+
251
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
252
+ return inputs, labels
253
+
254
+
255
+ def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
256
+ num_samples = len(samples_idx)
257
+ samples_to_remove = num_samples % batch_size
258
+
259
+ if samples_to_remove != 0:
260
+ samples_idx = samples_idx[:-samples_to_remove]
261
+ sections_split = num_samples // batch_size
262
+ batch_idx = np.split(samples_idx, sections_split)
263
+ return batch_idx
264
+
265
+
266
+ def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length):
267
+ """
268
+ The training iterator is advanced so that after groupifying the samples,
269
+ `num_samples` of length `max_seq_length` are returned.
270
+ """
271
+ num_total_tokens = max_seq_length * num_samples
272
+ samples = defaultdict(list)
273
+
274
+ i = 0
275
+ while i < num_total_tokens:
276
+ tokenized_samples = next(train_iterator)
277
+ i += len(tokenized_samples["input_ids"])
278
+
279
+ # concatenate tokenized samples to list
280
+ samples = {k: samples[k] + tokenized_samples[k] for k in tokenized_samples.keys()}
281
+
282
+ # Concatenated tokens are split to lists of length `max_seq_length`.
283
+ # Note that remainedr of % max_seq_length are thrown away.
284
+ def group_texts(examples):
285
+ result = {
286
+ k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)]
287
+ for k, t in examples.items()
288
+ }
289
+ return result
290
+
291
+ grouped_samples = group_texts(samples)
292
+ return grouped_samples
293
+
294
+
295
+ def write_train_metric(summary_writer, train_metrics, train_time, step):
296
+ summary_writer.scalar("train_time", train_time, step)
297
+
298
+ train_metrics = get_metrics(train_metrics)
299
+ for key, vals in train_metrics.items():
300
+ tag = f"train_{key}"
301
+ for i, val in enumerate(vals):
302
+ summary_writer.scalar(tag, val, step - len(vals) + i + 1)
303
+
304
+
305
+ def write_eval_metric(summary_writer, eval_metrics, step):
306
+ for metric_name, value in eval_metrics.items():
307
+ summary_writer.scalar(f"eval_{metric_name}", value, step)
308
+
309
+
310
+ if __name__ == "__main__":
311
+ # See all possible arguments in src/transformers/training_args.py
312
+ # or by passing the --help flag to this script.
313
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
314
+
315
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
316
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
317
+ # If we pass only one argument to the script and it's the path to a json file,
318
+ # let's parse it to get our arguments.
319
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
320
+ else:
321
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
322
+
323
+ if (
324
+ os.path.exists(training_args.output_dir)
325
+ and os.listdir(training_args.output_dir)
326
+ and training_args.do_train
327
+ and not training_args.overwrite_output_dir
328
+ ):
329
+ raise ValueError(
330
+ f"Output directory ({training_args.output_dir}) already exists and is not empty."
331
+ "Use --overwrite_output_dir to overcome."
332
+ )
333
+
334
+ # Setup logging
335
+ logging.basicConfig(
336
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
337
+ level="INFO",
338
+ datefmt="[%X]",
339
+ )
340
+
341
+ # Log on each process the small summary:
342
+ logger = logging.getLogger(__name__)
343
+ logger.warning(
344
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
345
+ + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
346
+ )
347
+
348
+ # Set the verbosity to info of the Transformers logger (on main process only):
349
+ logger.info(f"Training/evaluation parameters {training_args}")
350
+
351
+ # Set seed before initializing model.
352
+ set_seed(training_args.seed)
353
+
354
+ # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
355
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
356
+ # (the dataset will be downloaded automatically from the datasets Hub).
357
+ #
358
+ # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
359
+ # 'text' is found. You can easily tweak this behavior (see below).
360
+ if data_args.dataset_name is not None:
361
+ # Downloading and loading a dataset from the hub.
362
+ # dataset = load_dataset(
363
+ # data_args.dataset_name,
364
+ # data_args.dataset_config_name,
365
+ # cache_dir=model_args.cache_dir,
366
+ # streaming=True,
367
+ # split="train",
368
+ # )
369
+
370
+ danish_dataset = load_dataset("mc4", "da", split="train", streaming=True)
371
+ norwegian_dataset = load_dataset("mc4", "no", split="train", streaming=True)
372
+ swedish_dataset = load_dataset("mc4", "sv", split="train", streaming=True)
373
+
374
+ danish_dataset_subset = danish_dataset.take(int(24.1e6))
375
+ norwegian_dataset_subset = norwegian_dataset.take(int(24.1e6))
376
+ swedish_dataset_subset = swedish_dataset.take(int(24.1e6))
377
+
378
+ dataset = interleave_datasets(
379
+ [danish_dataset_subset, norwegian_dataset_subset, swedish_dataset_subset], probabilities=[0.34, 0.33, 0.33]
380
+ )
381
+
382
+ if model_args.config_name:
383
+ config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
384
+ elif model_args.model_name_or_path:
385
+ print(f"Setting config from path: {model_args.model_name_or_path}")
386
+ config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
387
+ else:
388
+ config = CONFIG_MAPPING[model_args.model_type]()
389
+ logger.warning("You are instantiating a new config instance from scratch.")
390
+
391
+ if model_args.tokenizer_name:
392
+ tokenizer = AutoTokenizer.from_pretrained(
393
+ model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
394
+ )
395
+ elif model_args.model_name_or_path:
396
+ tokenizer = AutoTokenizer.from_pretrained(
397
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
398
+ )
399
+ else:
400
+ raise ValueError(
401
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script."
402
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
403
+ )
404
+
405
+ # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
406
+ # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
407
+ # efficient when it receives the `special_tokens_mask`.
408
+ def tokenize_function(examples):
409
+ return tokenizer(examples[data_args.text_column_name], return_special_tokens_mask=True)
410
+
411
+ tokenized_datasets = dataset.map(
412
+ tokenize_function,
413
+ batched=True,
414
+ )
415
+
416
+ shuffle_seed = training_args.seed
417
+ tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed)
418
+
419
+ has_tensorboard = is_tensorboard_available()
420
+ if has_tensorboard and jax.process_index() == 0:
421
+ try:
422
+ from flax.metrics.tensorboard import SummaryWriter
423
+ except ImportError as ie:
424
+ has_tensorboard = False
425
+ logger.warning(
426
+ f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
427
+ )
428
+
429
+ summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
430
+
431
+ # Data collator
432
+ # This one will take care of randomly masking the tokens.
433
+ data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
434
+
435
+ # Initialize our training
436
+ rng = jax.random.PRNGKey(training_args.seed)
437
+ dropout_rngs = jax.random.split(rng, jax.local_device_count())
438
+
439
+ if model_args.model_name_or_path:
440
+ model = FlaxAutoModelForMaskedLM.from_pretrained(
441
+ model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
442
+ )
443
+ else:
444
+ model = FlaxAutoModelForMaskedLM.from_config(
445
+ config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
446
+ )
447
+
448
+ # Store some constant
449
+ num_epochs = int(training_args.num_train_epochs)
450
+ train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
451
+ eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
452
+
453
+ # define number steps per stream epoch
454
+ num_train_steps = data_args.num_train_steps
455
+
456
+ # Create learning rate schedule
457
+ warmup_fn = optax.linear_schedule(
458
+ init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
459
+ )
460
+ decay_fn = optax.linear_schedule(
461
+ init_value=training_args.learning_rate,
462
+ end_value=0,
463
+ transition_steps=num_train_steps - training_args.warmup_steps,
464
+ )
465
+ linear_decay_lr_schedule_fn = optax.join_schedules(
466
+ schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
467
+ )
468
+
469
+ # We use Optax's "masking" functionality to not apply weight decay
470
+ # to bias and LayerNorm scale parameters. decay_mask_fn returns a
471
+ # mask boolean with the same structure as the parameters.
472
+ # The mask is True for parameters that should be decayed.
473
+ # Note that this mask is specifically adapted for FlaxBERT-like models.
474
+ # For other models, one should correct the layer norm parameter naming
475
+ # accordingly.
476
+ def decay_mask_fn(params):
477
+ flat_params = traverse_util.flatten_dict(params)
478
+ flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
479
+ return traverse_util.unflatten_dict(flat_mask)
480
+
481
+ # create adam optimizer
482
+ adamw = optax.adamw(
483
+ learning_rate=linear_decay_lr_schedule_fn,
484
+ b1=training_args.adam_beta1,
485
+ b2=training_args.adam_beta2,
486
+ eps=training_args.adam_epsilon,
487
+ weight_decay=training_args.weight_decay,
488
+ mask=decay_mask_fn,
489
+ )
490
+
491
+ # Setup train state
492
+ state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)
493
+
494
+ # Define gradient update step fn
495
+ def train_step(state, batch, dropout_rng):
496
+ dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
497
+
498
+ def loss_fn(params):
499
+ labels = batch.pop("labels")
500
+
501
+ logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
502
+
503
+ # compute loss, ignore padded input tokens
504
+ label_mask = jnp.where(labels > 0, 1.0, 0.0)
505
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
506
+
507
+ # take average
508
+ loss = loss.sum() / label_mask.sum()
509
+
510
+ return loss
511
+
512
+ grad_fn = jax.value_and_grad(loss_fn)
513
+ loss, grad = grad_fn(state.params)
514
+ grad = jax.lax.pmean(grad, "batch")
515
+ new_state = state.apply_gradients(grads=grad)
516
+
517
+ metrics = jax.lax.pmean(
518
+ {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
519
+ )
520
+
521
+ return new_state, metrics, new_dropout_rng
522
+
523
+ # Create parallel version of the train step
524
+ p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
525
+
526
+ # Define eval fn
527
+ def eval_step(params, batch):
528
+ labels = batch.pop("labels")
529
+
530
+ logits = model(**batch, params=params, train=False)[0]
531
+
532
+ # compute loss, ignore padded input tokens
533
+ label_mask = jnp.where(labels > 0, 1.0, 0.0)
534
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
535
+
536
+ # compute accuracy
537
+ accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask
538
+
539
+ # summarize metrics
540
+ metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
541
+ metrics = jax.lax.psum(metrics, axis_name="batch")
542
+
543
+ return metrics
544
+
545
+ p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
546
+
547
+ # Replicate the train state on each device
548
+ state = jax_utils.replicate(state)
549
+
550
+ train_time = 0
551
+ train_start = time.time()
552
+ train_metrics = []
553
+ eval_metrics = []
554
+
555
+ training_iter = iter(tokenized_datasets)
556
+
557
+ max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
558
+ eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
559
+
560
+ steps = tqdm(range(num_train_steps), desc="Training...", position=0)
561
+ for step in range(num_train_steps):
562
+ # ======================== Training ================================
563
+ try:
564
+ samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
565
+ except StopIteration:
566
+ # Once the end of the dataset stream is reached, the training iterator
567
+ # is reinitialized and reshuffled and a new eval dataset is randomely chosen.
568
+ shuffle_seed += 1
569
+ tokenized_datasets.set_epoch(shuffle_seed)
570
+
571
+ training_iter = iter(tokenized_datasets)
572
+
573
+ eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
574
+ samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
575
+
576
+ # process input samples
577
+ model_inputs = data_collator(samples)
578
+
579
+ # Model forward
580
+ model_inputs = shard(model_inputs.data)
581
+ state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
582
+
583
+ train_metrics.append(train_metric)
584
+
585
+ if step % training_args.logging_steps == 0 and step > 0:
586
+ steps.write(
587
+ f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
588
+ )
589
+ train_time += time.time() - train_start
590
+ if has_tensorboard and jax.process_index() == 0:
591
+ write_train_metric(summary_writer, train_metrics, train_time, step)
592
+ train_metrics = []
593
+
594
+ # ======================== Evaluating ==============================
595
+ if step % training_args.eval_steps == 0 and step > 0:
596
+ eval_samples_idx = jnp.arange(data_args.num_eval_samples)
597
+ eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
598
+
599
+ for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)):
600
+ # process input samples
601
+ batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()}
602
+ model_inputs = data_collator(batch_eval_samples)
603
+
604
+ # Model forward
605
+ model_inputs = shard(model_inputs.data)
606
+ metrics = p_eval_step(state.params, model_inputs)
607
+ eval_metrics.append(metrics)
608
+
609
+ # normalize eval metrics
610
+ eval_metrics = get_metrics(eval_metrics)
611
+ eval_metrics = jax.tree_map(jnp.sum, eval_metrics)
612
+ eval_normalizer = eval_metrics.pop("normalizer")
613
+ eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics)
614
+
615
+ # Update progress bar
616
+ steps.desc = f"Step... ({step + 1}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
617
+
618
+ if has_tensorboard and jax.process_index() == 0:
619
+ write_eval_metric(summary_writer, eval_metrics, step)
620
+ eval_metrics = []
621
+
622
+ # Saving at each save_step
623
+ if step % training_args.save_steps == 0 and step > 0:
624
+ # save checkpoint after each epoch and push checkpoint to the hub
625
+ if jax.process_index() == 0:
626
+ params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
627
+ model.save_pretrained(
628
+ training_args.output_dir,
629
+ params=params,
630
+ push_to_hub=training_args.push_to_hub,
631
+ commit_message=f"Saving weights and logs of step {step+1}",
632
+ )
633
+
634
+ # update tqdm bar
635
+ steps.update(1)
src/scandinavian_run_mlm_flax.py ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
18
+ text file or a dataset.
19
+
20
+ Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
21
+ https://huggingface.co/models?filter=masked-lm
22
+ """
23
+ import logging
24
+ import os
25
+ import sys
26
+ import time
27
+ from dataclasses import dataclass, field
28
+
29
+ # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
30
+ from pathlib import Path
31
+ from typing import Dict, List, Optional, Tuple
32
+
33
+ import numpy as np
34
+ from datasets import load_dataset, concatenate_datasets, interleave_datasets
35
+ from tqdm import tqdm
36
+
37
+ import flax
38
+ import jax
39
+ import jax.numpy as jnp
40
+ import optax
41
+ from flax import jax_utils, traverse_util
42
+ from flax.training import train_state
43
+ from flax.training.common_utils import get_metrics, onehot, shard
44
+ from transformers import (
45
+ CONFIG_MAPPING,
46
+ FLAX_MODEL_FOR_MASKED_LM_MAPPING,
47
+ AutoConfig,
48
+ AutoTokenizer,
49
+ FlaxAutoModelForMaskedLM,
50
+ HfArgumentParser,
51
+ PreTrainedTokenizerBase,
52
+ TensorType,
53
+ TrainingArguments,
54
+ is_tensorboard_available,
55
+ set_seed,
56
+ )
57
+
58
+
59
+ # Cache the result
60
+ has_tensorboard = is_tensorboard_available()
61
+ if has_tensorboard:
62
+ try:
63
+ from flax.metrics.tensorboard import SummaryWriter
64
+ except ImportError as ie:
65
+ has_tensorboard = False
66
+ print(f"Unable to display metrics through TensorBoard because some package are not installed: {ie}")
67
+
68
+ else:
69
+ print(
70
+ "Unable to display metrics through TensorBoard because the package is not installed: "
71
+ "Please run pip install tensorboard to enable."
72
+ )
73
+
74
+
75
+ MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
76
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
77
+
78
+
79
+ @dataclass
80
+ class ModelArguments:
81
+ """
82
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
83
+ """
84
+
85
+ model_name_or_path: Optional[str] = field(
86
+ default=None,
87
+ metadata={
88
+ "help": "The model checkpoint for weights initialization."
89
+ "Don't set if you want to train a model from scratch."
90
+ },
91
+ )
92
+ model_type: Optional[str] = field(
93
+ default=None,
94
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
95
+ )
96
+ config_name: Optional[str] = field(
97
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
98
+ )
99
+ tokenizer_name: Optional[str] = field(
100
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
101
+ )
102
+ cache_dir: Optional[str] = field(
103
+ default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
104
+ )
105
+ use_fast_tokenizer: bool = field(
106
+ default=True,
107
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
108
+ )
109
+ dtype: Optional[str] = field(
110
+ default="float32",
111
+ metadata={
112
+ "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
113
+ },
114
+ )
115
+
116
+
117
+ @dataclass
118
+ class DataTrainingArguments:
119
+ """
120
+ Arguments pertaining to what data we are going to input our model for training and eval.
121
+ """
122
+
123
+ dataset_name: Optional[str] = field(
124
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
125
+ )
126
+ dataset_config_name: Optional[str] = field(
127
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
128
+ )
129
+ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
130
+ validation_file: Optional[str] = field(
131
+ default=None,
132
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
133
+ )
134
+ train_ref_file: Optional[str] = field(
135
+ default=None,
136
+ metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
137
+ )
138
+ validation_ref_file: Optional[str] = field(
139
+ default=None,
140
+ metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
141
+ )
142
+ overwrite_cache: bool = field(
143
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
144
+ )
145
+ validation_split_percentage: Optional[int] = field(
146
+ default=5,
147
+ metadata={
148
+ "help": "The percentage of the train set used as validation set in case there's no validation split"
149
+ },
150
+ )
151
+ max_seq_length: Optional[int] = field(
152
+ default=None,
153
+ metadata={
154
+ "help": "The maximum total input sequence length after tokenization. Sequences longer "
155
+ "than this will be truncated. Default to the max input length of the model."
156
+ },
157
+ )
158
+ preprocessing_num_workers: Optional[int] = field(
159
+ default=None,
160
+ metadata={"help": "The number of processes to use for the preprocessing."},
161
+ )
162
+ mlm_probability: float = field(
163
+ default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
164
+ )
165
+ pad_to_max_length: bool = field(
166
+ default=False,
167
+ metadata={
168
+ "help": "Whether to pad all samples to `max_seq_length`. "
169
+ "If False, will pad the samples dynamically when batching to the maximum length in the batch."
170
+ },
171
+ )
172
+ line_by_line: bool = field(
173
+ default=False,
174
+ metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
175
+ )
176
+
177
+ def __post_init__(self):
178
+ if self.dataset_name is None and self.train_file is None and self.validation_file is None:
179
+ raise ValueError("Need either a dataset name or a training/validation file.")
180
+ else:
181
+ if self.train_file is not None:
182
+ extension = self.train_file.split(".")[-1]
183
+ assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
184
+ if self.validation_file is not None:
185
+ extension = self.validation_file.split(".")[-1]
186
+ assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
187
+
188
+
189
+ @flax.struct.dataclass
190
+ class FlaxDataCollatorForLanguageModeling:
191
+ """
192
+ Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
193
+ are not all of the same length.
194
+
195
+ Args:
196
+ tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
197
+ The tokenizer used for encoding the data.
198
+ mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
199
+ The probability with which to (randomly) mask tokens in the input.
200
+
201
+ .. note::
202
+
203
+ For best performance, this data collator should be used with a dataset having items that are dictionaries or
204
+ BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
205
+ :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
206
+ argument :obj:`return_special_tokens_mask=True`.
207
+ """
208
+
209
+ tokenizer: PreTrainedTokenizerBase
210
+ mlm_probability: float = 0.15
211
+
212
+ def __post_init__(self):
213
+ if self.tokenizer.mask_token is None:
214
+ raise ValueError(
215
+ "This tokenizer does not have a mask token which is necessary for masked language modeling. "
216
+ "You should pass `mlm=False` to train on causal language modeling instead."
217
+ )
218
+
219
+ def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
220
+ # Handle dict or lists with proper padding and conversion to tensor.
221
+ batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)
222
+
223
+ # If special token mask has been preprocessed, pop it from the dict.
224
+ special_tokens_mask = batch.pop("special_tokens_mask", None)
225
+
226
+ batch["input_ids"], batch["labels"] = self.mask_tokens(
227
+ batch["input_ids"], special_tokens_mask=special_tokens_mask
228
+ )
229
+ return batch
230
+
231
+ def mask_tokens(
232
+ self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
233
+ ) -> Tuple[jnp.ndarray, jnp.ndarray]:
234
+ """
235
+ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
236
+ """
237
+ labels = inputs.copy()
238
+ # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
239
+ probability_matrix = np.full(labels.shape, self.mlm_probability)
240
+ special_tokens_mask = special_tokens_mask.astype("bool")
241
+
242
+ probability_matrix[special_tokens_mask] = 0.0
243
+ masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
244
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens
245
+
246
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
247
+ indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
248
+ inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
249
+
250
+ # 10% of the time, we replace masked input tokens with random word
251
+ indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
252
+ indices_random &= masked_indices & ~indices_replaced
253
+
254
+ random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
255
+ inputs[indices_random] = random_words[indices_random]
256
+
257
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
258
+ return inputs, labels
259
+
260
+
261
+ def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
262
+ num_samples = len(samples_idx)
263
+ samples_to_remove = num_samples % batch_size
264
+
265
+ if samples_to_remove != 0:
266
+ samples_idx = samples_idx[:-samples_to_remove]
267
+ sections_split = num_samples // batch_size
268
+ batch_idx = np.split(samples_idx, sections_split)
269
+ return batch_idx
270
+
271
+
272
+ def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
273
+ summary_writer.scalar("train_time", train_time, step)
274
+
275
+ train_metrics = get_metrics(train_metrics)
276
+ for key, vals in train_metrics.items():
277
+ tag = f"train_{key}"
278
+ for i, val in enumerate(vals):
279
+ summary_writer.scalar(tag, val, step - len(vals) + i + 1)
280
+
281
+ for metric_name, value in eval_metrics.items():
282
+ summary_writer.scalar(f"eval_{metric_name}", value, step)
283
+
284
+
285
+ if __name__ == "__main__":
286
+ # See all possible arguments in src/transformers/training_args.py
287
+ # or by passing the --help flag to this script.
288
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
289
+
290
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
291
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
292
+ # If we pass only one argument to the script and it's the path to a json file,
293
+ # let's parse it to get our arguments.
294
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
295
+ else:
296
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
297
+
298
+ if (
299
+ os.path.exists(training_args.output_dir)
300
+ and os.listdir(training_args.output_dir)
301
+ and training_args.do_train
302
+ and not training_args.overwrite_output_dir
303
+ ):
304
+ raise ValueError(
305
+ f"Output directory ({training_args.output_dir}) already exists and is not empty."
306
+ "Use --overwrite_output_dir to overcome."
307
+ )
308
+
309
+ # Setup logging
310
+ logging.basicConfig(
311
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
312
+ level="NOTSET",
313
+ datefmt="[%X]",
314
+ )
315
+
316
+ # Log on each process the small summary:
317
+ logger = logging.getLogger(__name__)
318
+ logger.warning(
319
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
320
+ + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
321
+ )
322
+
323
+ # Set the verbosity to info of the Transformers logger (on main process only):
324
+ logger.info(f"Training/evaluation parameters {training_args}")
325
+
326
+ # Set seed before initializing model.
327
+ set_seed(training_args.seed)
328
+
329
+ # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
330
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
331
+ # (the dataset will be downloaded automatically from the datasets Hub).
332
+ #
333
+ # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
334
+ # 'text' is found. You can easily tweak this behavior (see below).
335
+ #
336
+ # In distributed training, the load_dataset function guarantees that only one local process can concurrently
337
+ # download the dataset.
338
+ # if data_args.dataset_name is not None:
339
+ # Downloading and loading a dataset from the hub.
340
+ # datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
341
+
342
+ # # Downloading the scandinavian datasets and concatenating them
343
+ # danish_dataset = load_dataset("mc4", "da", split="train[:24100000]") # , download_mode="force_redownload")
344
+ # norwegian_dataset = load_dataset("mc4", "no", split="train[:24100000]") # , download_mode="force_redownload")
345
+ # swedish_dataset = load_dataset("mc4", "sv", split="train[:24100000]") # , download_mode="force_redownload")
346
+ # all_datasets = concatenate_datasets([danish_dataset, norwegian_dataset, swedish_dataset])
347
+ # datasets = all_datasets.shuffle()
348
+ # datasets = datasets.select(range(1000))
349
+ # datasets = datasets.train_test_split(test_size=0.01)
350
+ # datasets["validation"] = datasets["test"]
351
+
352
+ # Downloading the scandinavian datasets and interleaving them
353
+ danish_dataset = load_dataset('mc4', 'da', split="train[:24100000]", streaming=True)
354
+ norwegian_dataset = load_dataset('mc4', 'no', split="train[:24100000]", streaming=True)
355
+ swedish_dataset = load_dataset('mc4', 'sv', split="train[:24100000]", streaming=True)
356
+
357
+ dataset = interleave_datasets([danish_dataset , norwegian_dataset , swedish_dataset], probabilities=[0.33, 0.33, 0.33])
358
+ dataset = dataset.train_test_split(test_size=0.01)
359
+ dataset["validation"] = dataset["test"]
360
+
361
+
362
+ if "validation" not in datasets.keys():
363
+ datasets["validation"] = load_dataset(
364
+ data_args.dataset_name,
365
+ data_args.dataset_config_name,
366
+ split=f"train[:{data_args.validation_split_percentage}%]",
367
+ cache_dir=model_args.cache_dir,
368
+ )
369
+ datasets["train"] = load_dataset(
370
+ data_args.dataset_name,
371
+ data_args.dataset_config_name,
372
+ split=f"train[{data_args.validation_split_percentage}%:]",
373
+ cache_dir=model_args.cache_dir,
374
+ )
375
+ # else:
376
+ # data_files = {}
377
+ # if data_args.train_file is not None:
378
+ # data_files["train"] = data_args.train_file
379
+ # if data_args.validation_file is not None:
380
+ # data_files["validation"] = data_args.validation_file
381
+ # extension = data_args.train_file.split(".")[-1]
382
+ # if extension == "txt":
383
+ # extension = "text"
384
+
385
+ # datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
386
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
387
+ # https://huggingface.co/docs/datasets/loading_datasets.html.
388
+
389
+ # Load pretrained model and tokenizer
390
+
391
+ # Distributed training:
392
+ # The .from_pretrained methods guarantee that only one local process can concurrently
393
+ # download model & vocab.
394
+ if model_args.config_name:
395
+ config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
396
+ elif model_args.model_name_or_path:
397
+ config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
398
+ else:
399
+ config = CONFIG_MAPPING[model_args.model_type]()
400
+ logger.warning("You are instantiating a new config instance from scratch.")
401
+
402
+ if model_args.tokenizer_name:
403
+ tokenizer = AutoTokenizer.from_pretrained(
404
+ model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
405
+ )
406
+ elif model_args.model_name_or_path:
407
+ tokenizer = AutoTokenizer.from_pretrained(
408
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
409
+ )
410
+ else:
411
+ raise ValueError(
412
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script."
413
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
414
+ )
415
+
416
+ # Preprocessing the datasets.
417
+ # First we tokenize all the texts.
418
+ if training_args.do_train:
419
+ column_names = datasets["train"].column_names
420
+ else:
421
+ column_names = datasets["validation"].column_names
422
+ text_column_name = "text" if "text" in column_names else column_names[0]
423
+
424
+ max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
425
+
426
+ if data_args.line_by_line:
427
+ # When using line_by_line, we just tokenize each nonempty line.
428
+ padding = "max_length" if data_args.pad_to_max_length else False
429
+
430
+ def tokenize_function(examples):
431
+ # Remove empty lines
432
+ examples = [line for line in examples if len(line) > 0 and not line.isspace()]
433
+ return tokenizer(
434
+ examples,
435
+ return_special_tokens_mask=True,
436
+ padding=padding,
437
+ truncation=True,
438
+ max_length=max_seq_length,
439
+ )
440
+
441
+ tokenized_datasets = datasets.map(
442
+ tokenize_function,
443
+ input_columns=[text_column_name],
444
+ batched=True,
445
+ num_proc=data_args.preprocessing_num_workers,
446
+ remove_columns=column_names,
447
+ load_from_cache_file=not data_args.overwrite_cache,
448
+ )
449
+
450
+ else:
451
+ # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
452
+ # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
453
+ # efficient when it receives the `special_tokens_mask`.
454
+ def tokenize_function(examples):
455
+ return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
456
+
457
+ tokenized_datasets = datasets.map(
458
+ tokenize_function,
459
+ batched=True,
460
+ num_proc=data_args.preprocessing_num_workers,
461
+ remove_columns=column_names,
462
+ load_from_cache_file=not data_args.overwrite_cache,
463
+ )
464
+
465
+ # Main data processing function that will concatenate all texts from our dataset and generate chunks of
466
+ # max_seq_length.
467
+ def group_texts(examples):
468
+ # Concatenate all texts.
469
+ concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
470
+ total_length = len(concatenated_examples[list(examples.keys())[0]])
471
+ # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
472
+ # customize this part to your needs.
473
+ total_length = (total_length // max_seq_length) * max_seq_length
474
+ # Split by chunks of max_len.
475
+ result = {
476
+ k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
477
+ for k, t in concatenated_examples.items()
478
+ }
479
+ return result
480
+
481
+ # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
482
+ # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
483
+ # might be slower to preprocess.
484
+ #
485
+ # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
486
+ # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
487
+ tokenized_datasets = tokenized_datasets.map(
488
+ group_texts,
489
+ batched=True,
490
+ num_proc=data_args.preprocessing_num_workers,
491
+ load_from_cache_file=not data_args.overwrite_cache,
492
+ )
493
+
494
+ # Enable tensorboard only on the master node
495
+ if has_tensorboard and jax.process_index() == 0:
496
+ summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
497
+
498
+ # Data collator
499
+ # This one will take care of randomly masking the tokens.
500
+ data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
501
+
502
+ # Initialize our training
503
+ rng = jax.random.PRNGKey(training_args.seed)
504
+ dropout_rngs = jax.random.split(rng, jax.local_device_count())
505
+
506
+ model = FlaxAutoModelForMaskedLM.from_config(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype))
507
+
508
+ # Store some constant
509
+ num_epochs = int(training_args.num_train_epochs)
510
+ train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
511
+ eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
512
+
513
+ num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs
514
+
515
+ # Create learning rate schedule
516
+ warmup_fn = optax.linear_schedule(
517
+ init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
518
+ )
519
+ decay_fn = optax.linear_schedule(
520
+ init_value=training_args.learning_rate,
521
+ end_value=0,
522
+ transition_steps=num_train_steps - training_args.warmup_steps,
523
+ )
524
+ linear_decay_lr_schedule_fn = optax.join_schedules(
525
+ schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
526
+ )
527
+
528
+ # We use Optax's "masking" functionality to not apply weight decay
529
+ # to bias and LayerNorm scale parameters. decay_mask_fn returns a
530
+ # mask boolean with the same structure as the parameters.
531
+ # The mask is True for parameters that should be decayed.
532
+ # Note that this mask is specifically adapted for FlaxBERT-like models.
533
+ # For other models, one should correct the layer norm parameter naming
534
+ # accordingly.
535
+ def decay_mask_fn(params):
536
+ flat_params = traverse_util.flatten_dict(params)
537
+ flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
538
+ return traverse_util.unflatten_dict(flat_mask)
539
+
540
+ # create adam optimizer
541
+ adamw = optax.adamw(
542
+ learning_rate=linear_decay_lr_schedule_fn,
543
+ b1=training_args.adam_beta1,
544
+ b2=training_args.adam_beta2,
545
+ eps=1e-8,
546
+ weight_decay=training_args.weight_decay,
547
+ mask=decay_mask_fn,
548
+ )
549
+
550
+ # Setup train state
551
+ state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)
552
+
553
+ # Define gradient update step fn
554
+ def train_step(state, batch, dropout_rng):
555
+ dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
556
+
557
+ def loss_fn(params):
558
+ labels = batch.pop("labels")
559
+
560
+ logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
561
+
562
+ # compute loss, ignore padded input tokens
563
+ label_mask = jnp.where(labels > 0, 1.0, 0.0)
564
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
565
+
566
+ # take average
567
+ loss = loss.sum() / label_mask.sum()
568
+
569
+ return loss
570
+
571
+ grad_fn = jax.value_and_grad(loss_fn)
572
+ loss, grad = grad_fn(state.params)
573
+ grad = jax.lax.pmean(grad, "batch")
574
+ new_state = state.apply_gradients(grads=grad)
575
+
576
+ metrics = jax.lax.pmean(
577
+ {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
578
+ )
579
+
580
+ return new_state, metrics, new_dropout_rng
581
+
582
+ # Create parallel version of the train step
583
+ p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
584
+
585
+ # Define eval fn
586
+ def eval_step(params, batch):
587
+ labels = batch.pop("labels")
588
+
589
+ logits = model(**batch, params=params, train=False)[0]
590
+
591
+ # compute loss, ignore padded input tokens
592
+ label_mask = jnp.where(labels > 0, 1.0, 0.0)
593
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
594
+
595
+ # compute accuracy
596
+ accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask
597
+
598
+ # summarize metrics
599
+ metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
600
+ metrics = jax.lax.psum(metrics, axis_name="batch")
601
+
602
+ return metrics
603
+
604
+ p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
605
+
606
+ # Replicate the train state on each device
607
+ state = jax_utils.replicate(state)
608
+
609
+ train_time = 0
610
+ epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
611
+ for epoch in epochs:
612
+ # ======================== Training ================================
613
+ train_start = time.time()
614
+ train_metrics = []
615
+
616
+ # Create sampling rng
617
+ rng, input_rng = jax.random.split(rng)
618
+
619
+ # Generate an epoch by shuffling sampling indices from the train dataset
620
+ num_train_samples = len(tokenized_datasets["train"])
621
+ train_samples_idx = jax.random.permutation(input_rng, jnp.arange(num_train_samples))
622
+ train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)
623
+
624
+ # Gather the indexes for creating the batch and do a training step
625
+ for i, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
626
+ samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx]
627
+ model_inputs = data_collator(samples, pad_to_multiple_of=16)
628
+
629
+ # Model forward
630
+ model_inputs = shard(model_inputs.data)
631
+ state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
632
+ train_metrics.append(train_metric)
633
+
634
+ train_time += time.time() - train_start
635
+
636
+ epochs.write(
637
+ f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
638
+ )
639
+
640
+ # ======================== Evaluating ==============================
641
+ num_eval_samples = len(tokenized_datasets["validation"])
642
+ eval_samples_idx = jnp.arange(num_eval_samples)
643
+ eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
644
+
645
+ eval_metrics = []
646
+ for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
647
+ samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
648
+ model_inputs = data_collator(samples, pad_to_multiple_of=16)
649
+
650
+ # Model forward
651
+ model_inputs = shard(model_inputs.data)
652
+ metrics = p_eval_step(state.params, model_inputs)
653
+ eval_metrics.append(metrics)
654
+
655
+ # normalize eval metrics
656
+ eval_metrics = get_metrics(eval_metrics)
657
+ eval_metrics = jax.tree_map(jnp.sum, eval_metrics)
658
+ eval_normalizer = eval_metrics.pop("normalizer")
659
+ eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics)
660
+
661
+ # Update progress bar
662
+ epochs.desc = (
663
+ f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
664
+ )
665
+
666
+ # Save metrics
667
+ if has_tensorboard and jax.process_index() == 0:
668
+ cur_step = epoch * (len(tokenized_datasets["train"]) // train_batch_size)
669
+ write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)
670
+
671
+ # save checkpoint after each epoch and push checkpoint to the hub
672
+ if jax.process_index() == 0:
673
+ params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
674
+ model.save_pretrained(
675
+ training_args.output_dir,
676
+ params=params,
677
+ push_to_hub=training_args.push_to_hub,
678
+ commit_message=f"Saving weights and logs of epoch {epoch+1}",
679
+ )
680
+
681
+ # python3 ./roberta-large-scandi/src/scandi_run_mlm_flax.py --output_dir="./roberta-large-scandi/runs" --model_type="roberta" --config_name="${MODEL_DIR}" --tokenizer_name="${MODEL_DIR}" --dataset_name="mc4" --max_seq_length="128" --weight_decay="0.01" --per_device_train_batch_size="128" --per_device_eval_batch_size="128" --learning_rate="3e-4" --warmup_steps="1000" --overwrite_output_dir --pad_to_max_length --num_train_epochs="10" --adam_beta1="0.9" --adam_beta2="0.98"
src/tokenizer.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''Training script for tokenizer'''
2
+
3
+ from datasets import load_dataset
4
+ from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
5
+ from .utils import model_dir
6
+
7
+ # load dataset
8
+ dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
9
+
10
+ # Instantiate tokenizer
11
+ tokenizer = ByteLevelBPETokenizer()
12
+
13
+ def batch_iterator(batch_size=1000):
14
+ for i in range(0, len(dataset), batch_size):
15
+ yield dataset[i: i + batch_size]["text"]
16
+
17
+ # Customized training
18
+ tokenizer.train_from_iterator(
19
+ batch_iterator(),
20
+ vocab_size=50265,
21
+ min_frequency=2,
22
+ special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
23
+ )
24
+
25
+ # Save files to disk
26
+ tokenizer_path = model_dir / 'tokenizer.json'
27
+ tokenizer.save(str(tokenizer_path))
src/train_tokenizer.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset, concatenate_datasets
2
+ from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
3
+
4
+ model_dir = "./scandinavian" # ${MODEL_DIR}
5
+
6
+ # load dataset
7
+ # dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
8
+ # mc4_subset_with_five_languages = load_dataset("mc4", languages=["en", "fr", "es", "de", "zh"])
9
+ # yoruba_dataset = load_dataset("mc4", "yo", split="train[0:10]")
10
+ # yoruba_dataset2 = load_dataset("mc4", "yo", split="train[10:20]")
11
+
12
+ danish_dataset = load_dataset("mc4", "da") # , download_mode="force_redownload")
13
+ norwegian_dataset = load_dataset("mc4", "no") # , download_mode="force_redownload")
14
+ swedish_dataset = load_dataset("mc4", "sv") # , download_mode="force_redownload")
15
+
16
+ # all_datasets = concatenate_datasets([yoruba_dataset, yoruba_dataset2])
17
+ all_datasets = concatenate_datasets([danish_dataset, norwegian_dataset, swedish_dataset])
18
+ all_datasets = all_datasets.shuffle()
19
+
20
+ # Instantiate tokenizer
21
+ tokenizer = ByteLevelBPETokenizer()
22
+
23
+
24
+ def batch_iterator(batch_size=1000):
25
+ for i in range(0, len(all_datasets), batch_size):
26
+ yield all_datasets[i : i + batch_size]["text"]
27
+
28
+
29
+ # Customized training
30
+ tokenizer.train_from_iterator(
31
+ batch_iterator(),
32
+ vocab_size=50265,
33
+ min_frequency=2,
34
+ special_tokens=[
35
+ "<s>",
36
+ "<pad>",
37
+ "</s>",
38
+ "<unk>",
39
+ "<mask>",
40
+ ],
41
+ )
42
+
43
+ # Save files to disk
44
+ tokenizer.save(f"{model_dir}/tokenizer.json")
src/utils.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ '''Utility functions and variables used in other scripts'''
2
+
3
+ from pathlib import Path
4
+
5
+
6
+ root_dir = Path(__file__).parent.parent
7
+ model_dir = '' # TODO: Needs to be set