File size: 2,329 Bytes
64e15aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: llama3.2
language:
- en
base_model: meta-llama/Llama-3.2-1B
pipeline_tag: text-classification
library_name: peft
tags:
- regression
- story-point-estimation
- software-engineering
datasets:
- appceleratorstudio
- titanium
metrics:
- mae
- mdae
model-index:
- name: llama-3.2-1b-story-point-estimation
results:
- task:
type: regression
name: Story Point Estimation
dataset:
name: titanium Dataset
type: titanium
split: test
metrics:
- type: mae
value: 3.309
name: Mean Absolute Error (MAE)
- type: mdae
value: 2.24
name: Median Absolute Error (MdAE)
---
# LLAMA 3 Story Point Estimator - appceleratorstudio - titanium
This model is fine-tuned on issue descriptions from appceleratorstudio and tested on titanium for story point estimation.
## Model Details
- Base Model: LLAMA 3.2 1B
- Training Project: appceleratorstudio
- Test Project: titanium
- Task: Story Point Estimation (Regression)
- Architecture: PEFT (LoRA)
- Input: Issue titles
- Output: Story point estimation (continuous value)
## Usage
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import PeftConfig, PeftModel
# Load peft config model
config = PeftConfig.from_pretrained("DEVCamiloSepulveda/00-LLAMA3SP-appceleratorstudio-titanium")
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/00-LLAMA3SP-appceleratorstudio-titanium")
base_model = AutoModelForSequenceClassification.from_pretrained(
config.base_model_name_or_path,
num_labels=1,
torch_dtype=torch.float16,
device_map='auto'
)
model = PeftModel.from_pretrained(base_model, "DEVCamiloSepulveda/00-LLAMA3SP-appceleratorstudio-titanium")
# Prepare input text
text = "Your issue description here"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length")
# Get prediction
outputs = model(**inputs)
story_points = outputs.logits.item()
```
## Training Details
- Fine-tuning method: LoRA (Low-Rank Adaptation)
- Sequence length: 20 tokens
- Best training epoch: 0 / 20 epochs
- Batch size: 32
- Training time: 63.384 seconds
- Mean Absolute Error (MAE): 3.309
- Median Absolute Error (MdAE): 2.240
### Framework versions
- PEFT 0.14.0 |