File size: 2,329 Bytes
64e15aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---

license: llama3.2
language:
- en
base_model: meta-llama/Llama-3.2-1B
pipeline_tag: text-classification
library_name: peft
tags:
- regression
- story-point-estimation
- software-engineering
datasets:
- appceleratorstudio
- titanium
metrics:
- mae
- mdae
model-index:
- name: llama-3.2-1b-story-point-estimation
  results:
  - task:
      type: regression
      name: Story Point Estimation
    dataset:
      name: titanium Dataset
      type: titanium
      split: test
    metrics:
    - type: mae
      value: 3.309
      name: Mean Absolute Error (MAE)
    - type: mdae
      value: 2.24
      name: Median Absolute Error (MdAE)
---

# LLAMA 3 Story Point Estimator - appceleratorstudio - titanium

This model is fine-tuned on issue descriptions from appceleratorstudio and tested on titanium for story point estimation.

## Model Details
- Base Model: LLAMA 3.2 1B
- Training Project: appceleratorstudio
- Test Project: titanium
- Task: Story Point Estimation (Regression)
- Architecture: PEFT (LoRA)

- Input: Issue titles
- Output: Story point estimation (continuous value)

## Usage
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import PeftConfig, PeftModel

# Load peft config model
config = PeftConfig.from_pretrained("DEVCamiloSepulveda/00-LLAMA3SP-appceleratorstudio-titanium")

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/00-LLAMA3SP-appceleratorstudio-titanium")
base_model = AutoModelForSequenceClassification.from_pretrained(
    config.base_model_name_or_path,
    num_labels=1,
    torch_dtype=torch.float16,
    device_map='auto'
)
model = PeftModel.from_pretrained(base_model, "DEVCamiloSepulveda/00-LLAMA3SP-appceleratorstudio-titanium")

# Prepare input text
text = "Your issue description here"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length")

# Get prediction
outputs = model(**inputs)
story_points = outputs.logits.item()
```

## Training Details
- Fine-tuning method: LoRA (Low-Rank Adaptation)
- Sequence length: 20 tokens
- Best training epoch: 0 / 20 epochs
- Batch size: 32
- Training time: 63.384 seconds
- Mean Absolute Error (MAE): 3.309
- Median Absolute Error (MdAE): 2.240
### Framework versions

- PEFT 0.14.0