File size: 1,982 Bytes
a03b5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---

license: llama3.2
language:
- en
base_model:
- meta-llama/Llama-3.2-1B
pipeline_tag: text-classification
library_name: transformers
tags:
- regression
- story-point-estimation
- software-engineering
datasets:
- mulestudio
- mule
metrics:
- mae
- mdae

model-index:
- name: llama-3.2-1b-story-point-estimation
  results:
  - task:
      type: regression
      name: Story Point Estimation
    dataset:
      type: mule
      name: mule Dataset
      split: test
    metrics:
      - type: mae
        value: 2.940
        name: Mean Absolute Error (MAE)
      - type: mdae
        value: 2.599
        name: Median Absolute Error (MdAE)
---

# LLAMA 3 Story Point Estimator - mulestudio - mule

This model is fine-tuned on issue descriptions from mulestudio and tested on mule for story point estimation.

## Model Details
- Base Model: LLAMA 3.2 1B
- Training Project: mulestudio
- Test Project: mule
- Task: Story Point Estimation (Regression)
- Architecture: PEFT (LoRA)

- Input: Issue titles
- Output: Story point estimation (continuous value)

## Usage
```python

from transformers import AutoModelForSequenceClassification, AutoTokenizer

from peft import PeftModel



# Load tokenizer and model

tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/00-LLAMA3SP-mulestudio-mule")

model = AutoModelForSequenceClassification.from_pretrained("DEVCamiloSepulveda/00-LLAMA3SP-mulestudio-mule")



# Prepare input text

text = "Your issue description here"

inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length")



# Get prediction

outputs = model(**inputs)

story_points = outputs.logits.item()

```

## Training Details
- Fine-tuning method: LoRA (Low-Rank Adaptation)
- Sequence length: 20 tokens
- Best training epoch: 6 / 20 epochs
- Batch size: 32
- Training time: 215.485 seconds
- Mean Absolute Error (MAE): 2.940
- Median Absolute Error (MdAE): 2.599