DarthGrogu
commited on
Commit
·
3fef0af
1
Parent(s):
6b15261
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 215.27 +/- 12.72
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb35563dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb35563e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb35563ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb35563f80>", "_build": "<function ActorCriticPolicy._build at 0x7fbb3556c050>", "forward": "<function ActorCriticPolicy.forward at 0x7fbb3556c0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb3556c170>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbb3556c200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb3556c290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb3556c320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb3556c3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbb355a5f00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651768236.8821146, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1/yD04E+Q87vaEvUtHMb4dG+K82okJvQAAAAAAAAAAM2R6PreXjj/m8d0+QdJKvmz0gT4o30k+AAAAAAAAAADznOU9jxp3utBGHjwMn8E7jM8Ru43mTTwAAIA/AACAP1op1D0QWXk/yS7JPVPyur7K2DA9Nc1lvQAAAAAAAAAATa0kPbi2ubldtLU5vq26NF3U4rm4hdq4AACAPwAAgD/ATL+9j85ruvblvbuKpJM263xhuwg0BLYAAIA/AACAP+ahpz1bUbs9g+awPEALNb5ONuq8Lhz/vAAAAAAAAAAAdffCvpxl3D6il0M94KZMvsJL1LyohTe8AAAAAAAAAACzkaK9nwKiP7CdRL7fmuO+2fNVvWYpyDwAAAAAAAAAAOZXIT4wdz4/Yi1/PQdbD75X0XY9TkhIPQAAAAAAAAAAAPIAvERVpD8K6tW8W0itvv38Qjz2yW28AAAAAAAAAABAxLA+GCiKPa9MMroPgv64w3GNPlpsVjkAAIA/AACAP62wxr6XSgg/SKaMvUDtfL7xo6y8u6DrvQAAAAAAAAAAJTaFvtTwFL2CTSs7JvjmOUBugD5tSV+6AACAPwAAgD9N+Eo9jTwwP4cpvT3WVmG+YfZ0PT7mYrsAAAAAAAAAAMo9wD6l7DE/qNpLvbkhor67jB09Pe3uvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHZPF/UcZXUCUhpRSlIwBbJRN6AOMAXSUR0CLJD238XN1dX2UKGgGaAloD0MIpb3BFyYsWUCUhpRSlGgVTegDaBZHQIsq3x8UmD11fZQoaAZoCWgPQwj4HFiOEJ1gQJSGlFKUaBVN6ANoFkdAiysLmITGpHV9lChoBmgJaA9DCE6XxcTm0FpAlIaUUpRoFU3oA2gWR0CLK/+hoM8YdX2UKGgGaAloD0MIKxiV1AkfYECUhpRSlGgVTegDaBZHQIsvMFr2xpt1fZQoaAZoCWgPQwgjZYuk3fBYQJSGlFKUaBVN6ANoFkdAizIEeIVM23V9lChoBmgJaA9DCCO9qN2vMFpAlIaUUpRoFU3oA2gWR0CLNfeu3c59dX2UKGgGaAloD0MIDd5X5UK1ZUCUhpRSlGgVTeEBaBZHQItGG3H7xd91fZQoaAZoCWgPQwhQjZduElthQJSGlFKUaBVN6ANoFkdAi1hw482aUnV9lChoBmgJaA9DCNWUZB0OvmpAlIaUUpRoFU06A2gWR0CLcCFJQLuydX2UKGgGaAloD0MISg1tADZaWECUhpRSlGgVTegDaBZHQIt0mOU+s5p1fZQoaAZoCWgPQwh9lBEXgFldQJSGlFKUaBVN6ANoFkdAi30gfdRBNXV9lChoBmgJaA9DCBbcD3hgDVlAlIaUUpRoFU3oA2gWR0CLf6cawUxmdX2UKGgGaAloD0MIKT+p9unxV0CUhpRSlGgVTegDaBZHQIuA8QI2OyV1fZQoaAZoCWgPQwjByTZwB49ZQJSGlFKUaBVN6ANoFkdAi4HMPJ7swHV9lChoBmgJaA9DCGa9GMqJ2l9AlIaUUpRoFU3oA2gWR0CLk23qiXY2dX2UKGgGaAloD0MI78hYbf4eYUCUhpRSlGgVTegDaBZHQIu9TDjzZpV1fZQoaAZoCWgPQwiCqPsApDhIQJSGlFKUaBVN6ANoFkdAi8PSOzY29HV9lChoBmgJaA9DCB8OEqJ8vVVAlIaUUpRoFU3oA2gWR0CLw/0eU6gedX2UKGgGaAloD0MIeQQ3UrYuX0CUhpRSlGgVTegDaBZHQIvE8G1QZXN1fZQoaAZoCWgPQwitNZTai2ZUQJSGlFKUaBVN6ANoFkdAi8feF10T13V9lChoBmgJaA9DCOOItfgUpFlAlIaUUpRoFU3oA2gWR0CMh/6P8yeqdX2UKGgGaAloD0MISDfCoiLvW0CUhpRSlGgVTegDaBZHQIyL3pIMBp51fZQoaAZoCWgPQwirQZjbPWhqQJSGlFKUaBVNggNoFkdAjI7+TFERa3V9lChoBmgJaA9DCAWIghlT1llAlIaUUpRoFU3oA2gWR0CMqs/GlyimdX2UKGgGaAloD0MIamyvBb3kWkCUhpRSlGgVTegDaBZHQIzADhm5Dqp1fZQoaAZoCWgPQwiR0QFJ2HteQJSGlFKUaBVN6ANoFkdAjMPCk43m3nV9lChoBmgJaA9DCHE7NCxGm1lAlIaUUpRoFU3oA2gWR0CMyx/FR51OdX2UKGgGaAloD0MI8lzfh4MgYECUhpRSlGgVTegDaBZHQIzNL0WdmQN1fZQoaAZoCWgPQwizsRLzrIJcQJSGlFKUaBVN6ANoFkdAjM45x7zClHV9lChoBmgJaA9DCPMhqBq9z1hAlIaUUpRoFU3oA2gWR0CMzupvP1L8dX2UKGgGaAloD0MIwJXs2Ah0V0CUhpRSlGgVTegDaBZHQIzduZ5Rjz91fZQoaAZoCWgPQwidSgaAql5pQJSGlFKUaBVN6wFoFkdAjOzd0Rvm5nV9lChoBmgJaA9DCPZ9OEiIkjFAlIaUUpRoFU0rAWgWR0CM8aUu+RHPdX2UKGgGaAloD0MI5bm+Dwc1O8CUhpRSlGgVTToBaBZHQIz0r0th/iJ1fZQoaAZoCWgPQwiSzsDIy4hVQJSGlFKUaBVN6ANoFkdAjP+smWt2cXV9lChoBmgJaA9DCL8K8N3mQWBAlIaUUpRoFU3oA2gWR0CNBJYp2ECedX2UKGgGaAloD0MIYASNmcQWYUCUhpRSlGgVTegDaBZHQI0Eu3+dbxF1fZQoaAZoCWgPQwjHRiBe12FSQJSGlFKUaBVN6ANoFkdAjQV+irT6SHV9lChoBmgJaA9DCHjvqDEhCVRAlIaUUpRoFU3oA2gWR0CNB8pda+vhdX2UKGgGaAloD0MITS7GwDrIWUCUhpRSlGgVTegDaBZHQI0J2kYXO4Z1fZQoaAZoCWgPQwgxX16A/TlhQJSGlFKUaBVN6ANoFkdAjQzckUsWf3V9lChoBmgJaA9DCHy3eeMkBGBAlIaUUpRoFU3oA2gWR0CNDyhmGucMdX2UKGgGaAloD0MItJCA0eXlLUCUhpRSlGgVTSwBaBZHQI0QgjY7JXB1fZQoaAZoCWgPQwjxvFRszOVdQJSGlFKUaBVN6ANoFkdAjTj6Vt4zJ3V9lChoBmgJaA9DCFkZjXxeUF9AlIaUUpRoFU3oA2gWR0CNPJRZ2ZAqdX2UKGgGaAloD0MIRbsKKT/ZW0CUhpRSlGgVTegDaBZHQI1D47HQyAR1fZQoaAZoCWgPQwh6bqErEfNeQJSGlFKUaBVN6ANoFkdAjUfP4dp7C3V9lChoBmgJaA9DCEf/y7Vok1RAlIaUUpRoFU3oA2gWR0CNWQBas6q9dX2UKGgGaAloD0MIiEuOO6WdWECUhpRSlGgVTegDaBZHQI1t+yTpxFR1fZQoaAZoCWgPQwhkk/yIXxEHQJSGlFKUaBVNPgFoFkdAjW6GtyPuHHV9lChoBmgJaA9DCB3J5T8kzWFAlIaUUpRoFU3oA2gWR0CNcQV2zOX3dX2UKGgGaAloD0MIGXEBaJSlX0CUhpRSlGgVTegDaBZHQI1707uDzy11fZQoaAZoCWgPQwjy7PKtDy9hQJSGlFKUaBVN6ANoFkdAjYBkxREWqXV9lChoBmgJaA9DCNDv+zcvK2FAlIaUUpRoFU3oA2gWR0CNgIqEOAiFdX2UKGgGaAloD0MIO1J95xd6XkCUhpRSlGgVTegDaBZHQI2BTrcCYC11fZQoaAZoCWgPQwgsflNYqflrQJSGlFKUaBVNQgFoFkdAjYNJdjXnQ3V9lChoBmgJaA9DCFDIztvYw15AlIaUUpRoFU3oA2gWR0CNg4Uu+RHPdX2UKGgGaAloD0MICB7f3jVNVUCUhpRSlGgVTegDaBZHQI2FhuCPIXF1fZQoaAZoCWgPQwisH5vkR2ZWQJSGlFKUaBVN6ANoFkdAjYiISDh99nV9lChoBmgJaA9DCD2CGynbgmZAlIaUUpRoFU17AmgWR0COSLJJXhfjdX2UKGgGaAloD0MIq7TFNb5OYUCUhpRSlGgVTegDaBZHQI5I5Ire67N1fZQoaAZoCWgPQwhRg2kYPrZnQJSGlFKUaBVN6ANoFkdAjkohPbfxc3V9lChoBmgJaA9DCC5VaYvrCGtAlIaUUpRoFU2hAWgWR0COW5LL6k6+dX2UKGgGaAloD0MIp1g1CHMGbUCUhpRSlGgVTXoBaBZHQI5mZkd3jdZ1fZQoaAZoCWgPQwh/g/bqYyFhQJSGlFKUaBVN6ANoFkdAjnh0U47zTXV9lChoBmgJaA9DCOli00ohplxAlIaUUpRoFU3oA2gWR0COhZ36AOJ+dX2UKGgGaAloD0MIBHCzeLEgFkCUhpRSlGgVTREBaBZHQI6SGmYSg5B1fZQoaAZoCWgPQwjvVMA9z59cQJSGlFKUaBVN6ANoFkdAjrZ+s5n14HV9lChoBmgJaA9DCLq+DwcJnl5AlIaUUpRoFU3oA2gWR0COtzWd3B55dX2UKGgGaAloD0MIwtuDEJASXUCUhpRSlGgVTegDaBZHQI7IhOLzf791fZQoaAZoCWgPQwgDQYAMHf9hQJSGlFKUaBVN6ANoFkdAjs68gyM1j3V9lChoBmgJaA9DCLwEpz6QE1pAlIaUUpRoFU3oA2gWR0COz7t4RmK7dX2UKGgGaAloD0MIaqSl8nZsVUCUhpRSlGgVTegDaBZHQI7SutyPuG91fZQoaAZoCWgPQwh1ApoIGyJpQJSGlFKUaBVNdwFoFkdAjtLAE+xGD3V9lChoBmgJaA9DCNHrT+JzvFpAlIaUUpRoFU3oA2gWR0CO0wldC3PSdX2UKGgGaAloD0MI4srZO6MAYkCUhpRSlGgVTegDaBZHQI7VyYPXkHV1fZQoaAZoCWgPQwjrVWR0QJlZQJSGlFKUaBVN6ANoFkdAjtm4Ny5qd3V9lChoBmgJaA9DCPmFV5I87V9AlIaUUpRoFU3oA2gWR0CO3G+XZ5AydX2UKGgGaAloD0MI/aGZJ9caXECUhpRSlGgVTegDaBZHQI7cqbz9S/F1fZQoaAZoCWgPQwjVlGQdjtZbQJSGlFKUaBVN6ANoFkdAjt5IfCAMD3V9lChoBmgJaA9DCOQxA5XxnyjAlIaUUpRoFUvsaBZHQI7q8qnWJ791fZQoaAZoCWgPQwgTmiSWlAsQQJSGlFKUaBVNGwFoFkdAjuuEK/mDDnV9lChoBmgJaA9DCPG9v0F7eVtAlIaUUpRoFU3oA2gWR0CO8nOPeYUndX2UKGgGaAloD0MI+pl63aLMZ0CUhpRSlGgVTTIDaBZHQI70GgBcRlJ1fZQoaAZoCWgPQwit30xMF6IywJSGlFKUaBVL92gWR0CO+v5HmRvFdX2UKGgGaAloD0MIPiZSms1nVECUhpRSlGgVTegDaBZHQI8bYxN7Bwd1fZQoaAZoCWgPQwjFOerouPxnQJSGlFKUaBVNfgFoFkdAjzC8mrsByXV9lChoBmgJaA9DCPHXZI36M2tAlIaUUpRoFU3oAWgWR0CPTNTqjaf0dX2UKGgGaAloD0MIq3ZNSGulWUCUhpRSlGgVTegDaBZHQI9NDtmcvuh1fZQoaAZoCWgPQwhtcCL6tSxfQJSGlFKUaBVN6ANoFkdAj0268QI2O3V9lChoBmgJaA9DCJ9afXVVu1pAlIaUUpRoFU3oA2gWR0CPYpytFKChdX2UKGgGaAloD0MIR1oqb0fNXUCUhpRSlGgVTegDaBZHQI9mY5Lh73R1fZQoaAZoCWgPQwhNMJxrmLRbQJSGlFKUaBVN6ANoFkdAj2Zm3OObRXV9lChoBmgJaA9DCL4Ts14MfWBAlIaUUpRoFU3oA2gWR0CPZrBeokzHdX2UKGgGaAloD0MIcv4mFCI9XUCUhpRSlGgVTegDaBZHQI9pWVgQYk51fZQoaAZoCWgPQwjwbmWJzrlgQJSGlFKUaBVN6ANoFkdAj21WXb/OuHV9lChoBmgJaA9DCFXcuMX8zDVAlIaUUpRoFUvmaBZHQI9uxkmQbMp1fZQoaAZoCWgPQwj6JeKt8/pgQJSGlFKUaBVN6ANoFkdAj3AtdqtYCHV9lChoBmgJaA9DCLqEQ29x2mBAlIaUUpRoFU3oA2gWR0CPcHYgaFVUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee09fb466f9b19b0fe8e43108fe9f0eb9ecc07f6ed5c884dd381597de03a0f16
|
3 |
+
size 144106
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb35563dd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb35563e60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb35563ef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb35563f80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbb3556c050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbb3556c0e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb3556c170>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbb3556c200>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb3556c290>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb3556c320>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb3556c3b0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fbb355a5f00>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651768236.8821146,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1/yD04E+Q87vaEvUtHMb4dG+K82okJvQAAAAAAAAAAM2R6PreXjj/m8d0+QdJKvmz0gT4o30k+AAAAAAAAAADznOU9jxp3utBGHjwMn8E7jM8Ru43mTTwAAIA/AACAP1op1D0QWXk/yS7JPVPyur7K2DA9Nc1lvQAAAAAAAAAATa0kPbi2ubldtLU5vq26NF3U4rm4hdq4AACAPwAAgD/ATL+9j85ruvblvbuKpJM263xhuwg0BLYAAIA/AACAP+ahpz1bUbs9g+awPEALNb5ONuq8Lhz/vAAAAAAAAAAAdffCvpxl3D6il0M94KZMvsJL1LyohTe8AAAAAAAAAACzkaK9nwKiP7CdRL7fmuO+2fNVvWYpyDwAAAAAAAAAAOZXIT4wdz4/Yi1/PQdbD75X0XY9TkhIPQAAAAAAAAAAAPIAvERVpD8K6tW8W0itvv38Qjz2yW28AAAAAAAAAABAxLA+GCiKPa9MMroPgv64w3GNPlpsVjkAAIA/AACAP62wxr6XSgg/SKaMvUDtfL7xo6y8u6DrvQAAAAAAAAAAJTaFvtTwFL2CTSs7JvjmOUBugD5tSV+6AACAPwAAgD9N+Eo9jTwwP4cpvT3WVmG+YfZ0PT7mYrsAAAAAAAAAAMo9wD6l7DE/qNpLvbkhor67jB09Pe3uvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHZPF/UcZXUCUhpRSlIwBbJRN6AOMAXSUR0CLJD238XN1dX2UKGgGaAloD0MIpb3BFyYsWUCUhpRSlGgVTegDaBZHQIsq3x8UmD11fZQoaAZoCWgPQwj4HFiOEJ1gQJSGlFKUaBVN6ANoFkdAiysLmITGpHV9lChoBmgJaA9DCE6XxcTm0FpAlIaUUpRoFU3oA2gWR0CLK/+hoM8YdX2UKGgGaAloD0MIKxiV1AkfYECUhpRSlGgVTegDaBZHQIsvMFr2xpt1fZQoaAZoCWgPQwgjZYuk3fBYQJSGlFKUaBVN6ANoFkdAizIEeIVM23V9lChoBmgJaA9DCCO9qN2vMFpAlIaUUpRoFU3oA2gWR0CLNfeu3c59dX2UKGgGaAloD0MIDd5X5UK1ZUCUhpRSlGgVTeEBaBZHQItGG3H7xd91fZQoaAZoCWgPQwhQjZduElthQJSGlFKUaBVN6ANoFkdAi1hw482aUnV9lChoBmgJaA9DCNWUZB0OvmpAlIaUUpRoFU06A2gWR0CLcCFJQLuydX2UKGgGaAloD0MISg1tADZaWECUhpRSlGgVTegDaBZHQIt0mOU+s5p1fZQoaAZoCWgPQwh9lBEXgFldQJSGlFKUaBVN6ANoFkdAi30gfdRBNXV9lChoBmgJaA9DCBbcD3hgDVlAlIaUUpRoFU3oA2gWR0CLf6cawUxmdX2UKGgGaAloD0MIKT+p9unxV0CUhpRSlGgVTegDaBZHQIuA8QI2OyV1fZQoaAZoCWgPQwjByTZwB49ZQJSGlFKUaBVN6ANoFkdAi4HMPJ7swHV9lChoBmgJaA9DCGa9GMqJ2l9AlIaUUpRoFU3oA2gWR0CLk23qiXY2dX2UKGgGaAloD0MI78hYbf4eYUCUhpRSlGgVTegDaBZHQIu9TDjzZpV1fZQoaAZoCWgPQwiCqPsApDhIQJSGlFKUaBVN6ANoFkdAi8PSOzY29HV9lChoBmgJaA9DCB8OEqJ8vVVAlIaUUpRoFU3oA2gWR0CLw/0eU6gedX2UKGgGaAloD0MIeQQ3UrYuX0CUhpRSlGgVTegDaBZHQIvE8G1QZXN1fZQoaAZoCWgPQwitNZTai2ZUQJSGlFKUaBVN6ANoFkdAi8feF10T13V9lChoBmgJaA9DCOOItfgUpFlAlIaUUpRoFU3oA2gWR0CMh/6P8yeqdX2UKGgGaAloD0MISDfCoiLvW0CUhpRSlGgVTegDaBZHQIyL3pIMBp51fZQoaAZoCWgPQwirQZjbPWhqQJSGlFKUaBVNggNoFkdAjI7+TFERa3V9lChoBmgJaA9DCAWIghlT1llAlIaUUpRoFU3oA2gWR0CMqs/GlyimdX2UKGgGaAloD0MIamyvBb3kWkCUhpRSlGgVTegDaBZHQIzADhm5Dqp1fZQoaAZoCWgPQwiR0QFJ2HteQJSGlFKUaBVN6ANoFkdAjMPCk43m3nV9lChoBmgJaA9DCHE7NCxGm1lAlIaUUpRoFU3oA2gWR0CMyx/FR51OdX2UKGgGaAloD0MI8lzfh4MgYECUhpRSlGgVTegDaBZHQIzNL0WdmQN1fZQoaAZoCWgPQwizsRLzrIJcQJSGlFKUaBVN6ANoFkdAjM45x7zClHV9lChoBmgJaA9DCPMhqBq9z1hAlIaUUpRoFU3oA2gWR0CMzupvP1L8dX2UKGgGaAloD0MIwJXs2Ah0V0CUhpRSlGgVTegDaBZHQIzduZ5Rjz91fZQoaAZoCWgPQwidSgaAql5pQJSGlFKUaBVN6wFoFkdAjOzd0Rvm5nV9lChoBmgJaA9DCPZ9OEiIkjFAlIaUUpRoFU0rAWgWR0CM8aUu+RHPdX2UKGgGaAloD0MI5bm+Dwc1O8CUhpRSlGgVTToBaBZHQIz0r0th/iJ1fZQoaAZoCWgPQwiSzsDIy4hVQJSGlFKUaBVN6ANoFkdAjP+smWt2cXV9lChoBmgJaA9DCL8K8N3mQWBAlIaUUpRoFU3oA2gWR0CNBJYp2ECedX2UKGgGaAloD0MIYASNmcQWYUCUhpRSlGgVTegDaBZHQI0Eu3+dbxF1fZQoaAZoCWgPQwjHRiBe12FSQJSGlFKUaBVN6ANoFkdAjQV+irT6SHV9lChoBmgJaA9DCHjvqDEhCVRAlIaUUpRoFU3oA2gWR0CNB8pda+vhdX2UKGgGaAloD0MITS7GwDrIWUCUhpRSlGgVTegDaBZHQI0J2kYXO4Z1fZQoaAZoCWgPQwgxX16A/TlhQJSGlFKUaBVN6ANoFkdAjQzckUsWf3V9lChoBmgJaA9DCHy3eeMkBGBAlIaUUpRoFU3oA2gWR0CNDyhmGucMdX2UKGgGaAloD0MItJCA0eXlLUCUhpRSlGgVTSwBaBZHQI0QgjY7JXB1fZQoaAZoCWgPQwjxvFRszOVdQJSGlFKUaBVN6ANoFkdAjTj6Vt4zJ3V9lChoBmgJaA9DCFkZjXxeUF9AlIaUUpRoFU3oA2gWR0CNPJRZ2ZAqdX2UKGgGaAloD0MIRbsKKT/ZW0CUhpRSlGgVTegDaBZHQI1D47HQyAR1fZQoaAZoCWgPQwh6bqErEfNeQJSGlFKUaBVN6ANoFkdAjUfP4dp7C3V9lChoBmgJaA9DCEf/y7Vok1RAlIaUUpRoFU3oA2gWR0CNWQBas6q9dX2UKGgGaAloD0MIiEuOO6WdWECUhpRSlGgVTegDaBZHQI1t+yTpxFR1fZQoaAZoCWgPQwhkk/yIXxEHQJSGlFKUaBVNPgFoFkdAjW6GtyPuHHV9lChoBmgJaA9DCB3J5T8kzWFAlIaUUpRoFU3oA2gWR0CNcQV2zOX3dX2UKGgGaAloD0MIGXEBaJSlX0CUhpRSlGgVTegDaBZHQI1707uDzy11fZQoaAZoCWgPQwjy7PKtDy9hQJSGlFKUaBVN6ANoFkdAjYBkxREWqXV9lChoBmgJaA9DCNDv+zcvK2FAlIaUUpRoFU3oA2gWR0CNgIqEOAiFdX2UKGgGaAloD0MIO1J95xd6XkCUhpRSlGgVTegDaBZHQI2BTrcCYC11fZQoaAZoCWgPQwgsflNYqflrQJSGlFKUaBVNQgFoFkdAjYNJdjXnQ3V9lChoBmgJaA9DCFDIztvYw15AlIaUUpRoFU3oA2gWR0CNg4Uu+RHPdX2UKGgGaAloD0MICB7f3jVNVUCUhpRSlGgVTegDaBZHQI2FhuCPIXF1fZQoaAZoCWgPQwisH5vkR2ZWQJSGlFKUaBVN6ANoFkdAjYiISDh99nV9lChoBmgJaA9DCD2CGynbgmZAlIaUUpRoFU17AmgWR0COSLJJXhfjdX2UKGgGaAloD0MIq7TFNb5OYUCUhpRSlGgVTegDaBZHQI5I5Ire67N1fZQoaAZoCWgPQwhRg2kYPrZnQJSGlFKUaBVN6ANoFkdAjkohPbfxc3V9lChoBmgJaA9DCC5VaYvrCGtAlIaUUpRoFU2hAWgWR0COW5LL6k6+dX2UKGgGaAloD0MIp1g1CHMGbUCUhpRSlGgVTXoBaBZHQI5mZkd3jdZ1fZQoaAZoCWgPQwh/g/bqYyFhQJSGlFKUaBVN6ANoFkdAjnh0U47zTXV9lChoBmgJaA9DCOli00ohplxAlIaUUpRoFU3oA2gWR0COhZ36AOJ+dX2UKGgGaAloD0MIBHCzeLEgFkCUhpRSlGgVTREBaBZHQI6SGmYSg5B1fZQoaAZoCWgPQwjvVMA9z59cQJSGlFKUaBVN6ANoFkdAjrZ+s5n14HV9lChoBmgJaA9DCLq+DwcJnl5AlIaUUpRoFU3oA2gWR0COtzWd3B55dX2UKGgGaAloD0MIwtuDEJASXUCUhpRSlGgVTegDaBZHQI7IhOLzf791fZQoaAZoCWgPQwgDQYAMHf9hQJSGlFKUaBVN6ANoFkdAjs68gyM1j3V9lChoBmgJaA9DCLwEpz6QE1pAlIaUUpRoFU3oA2gWR0COz7t4RmK7dX2UKGgGaAloD0MIaqSl8nZsVUCUhpRSlGgVTegDaBZHQI7SutyPuG91fZQoaAZoCWgPQwh1ApoIGyJpQJSGlFKUaBVNdwFoFkdAjtLAE+xGD3V9lChoBmgJaA9DCNHrT+JzvFpAlIaUUpRoFU3oA2gWR0CO0wldC3PSdX2UKGgGaAloD0MI4srZO6MAYkCUhpRSlGgVTegDaBZHQI7VyYPXkHV1fZQoaAZoCWgPQwjrVWR0QJlZQJSGlFKUaBVN6ANoFkdAjtm4Ny5qd3V9lChoBmgJaA9DCPmFV5I87V9AlIaUUpRoFU3oA2gWR0CO3G+XZ5AydX2UKGgGaAloD0MI/aGZJ9caXECUhpRSlGgVTegDaBZHQI7cqbz9S/F1fZQoaAZoCWgPQwjVlGQdjtZbQJSGlFKUaBVN6ANoFkdAjt5IfCAMD3V9lChoBmgJaA9DCOQxA5XxnyjAlIaUUpRoFUvsaBZHQI7q8qnWJ791fZQoaAZoCWgPQwgTmiSWlAsQQJSGlFKUaBVNGwFoFkdAjuuEK/mDDnV9lChoBmgJaA9DCPG9v0F7eVtAlIaUUpRoFU3oA2gWR0CO8nOPeYUndX2UKGgGaAloD0MI+pl63aLMZ0CUhpRSlGgVTTIDaBZHQI70GgBcRlJ1fZQoaAZoCWgPQwit30xMF6IywJSGlFKUaBVL92gWR0CO+v5HmRvFdX2UKGgGaAloD0MIPiZSms1nVECUhpRSlGgVTegDaBZHQI8bYxN7Bwd1fZQoaAZoCWgPQwjFOerouPxnQJSGlFKUaBVNfgFoFkdAjzC8mrsByXV9lChoBmgJaA9DCPHXZI36M2tAlIaUUpRoFU3oAWgWR0CPTNTqjaf0dX2UKGgGaAloD0MIq3ZNSGulWUCUhpRSlGgVTegDaBZHQI9NDtmcvuh1fZQoaAZoCWgPQwhtcCL6tSxfQJSGlFKUaBVN6ANoFkdAj0268QI2O3V9lChoBmgJaA9DCJ9afXVVu1pAlIaUUpRoFU3oA2gWR0CPYpytFKChdX2UKGgGaAloD0MIR1oqb0fNXUCUhpRSlGgVTegDaBZHQI9mY5Lh73R1fZQoaAZoCWgPQwhNMJxrmLRbQJSGlFKUaBVN6ANoFkdAj2Zm3OObRXV9lChoBmgJaA9DCL4Ts14MfWBAlIaUUpRoFU3oA2gWR0CPZrBeokzHdX2UKGgGaAloD0MIcv4mFCI9XUCUhpRSlGgVTegDaBZHQI9pWVgQYk51fZQoaAZoCWgPQwjwbmWJzrlgQJSGlFKUaBVN6ANoFkdAj21WXb/OuHV9lChoBmgJaA9DCFXcuMX8zDVAlIaUUpRoFUvmaBZHQI9uxkmQbMp1fZQoaAZoCWgPQwj6JeKt8/pgQJSGlFKUaBVN6ANoFkdAj3AtdqtYCHV9lChoBmgJaA9DCLqEQ29x2mBAlIaUUpRoFU3oA2gWR0CPcHYgaFVUdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b550e38aa8dad65aaf117bef325baf22c7a8b24bad0290d2b426efd4328e275
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4d88340d8ca5e2a78e1bdc2dcb650f54f5be3acc58423da4c71d74fb7767881
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dcf18d7eaa393bcb8e6c0b9556ec6c61b4512f3172b375e73a381ab9b57803e
|
3 |
+
size 253195
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 215.26581240420427, "std_reward": 12.71646468962256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T17:00:52.288287"}
|