DarthGrogu commited on
Commit
3fef0af
·
1 Parent(s): 6b15261

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 215.27 +/- 12.72
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb35563dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb35563e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb35563ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb35563f80>", "_build": "<function ActorCriticPolicy._build at 0x7fbb3556c050>", "forward": "<function ActorCriticPolicy.forward at 0x7fbb3556c0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb3556c170>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbb3556c200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb3556c290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb3556c320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb3556c3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbb355a5f00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651768236.8821146, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1/yD04E+Q87vaEvUtHMb4dG+K82okJvQAAAAAAAAAAM2R6PreXjj/m8d0+QdJKvmz0gT4o30k+AAAAAAAAAADznOU9jxp3utBGHjwMn8E7jM8Ru43mTTwAAIA/AACAP1op1D0QWXk/yS7JPVPyur7K2DA9Nc1lvQAAAAAAAAAATa0kPbi2ubldtLU5vq26NF3U4rm4hdq4AACAPwAAgD/ATL+9j85ruvblvbuKpJM263xhuwg0BLYAAIA/AACAP+ahpz1bUbs9g+awPEALNb5ONuq8Lhz/vAAAAAAAAAAAdffCvpxl3D6il0M94KZMvsJL1LyohTe8AAAAAAAAAACzkaK9nwKiP7CdRL7fmuO+2fNVvWYpyDwAAAAAAAAAAOZXIT4wdz4/Yi1/PQdbD75X0XY9TkhIPQAAAAAAAAAAAPIAvERVpD8K6tW8W0itvv38Qjz2yW28AAAAAAAAAABAxLA+GCiKPa9MMroPgv64w3GNPlpsVjkAAIA/AACAP62wxr6XSgg/SKaMvUDtfL7xo6y8u6DrvQAAAAAAAAAAJTaFvtTwFL2CTSs7JvjmOUBugD5tSV+6AACAPwAAgD9N+Eo9jTwwP4cpvT3WVmG+YfZ0PT7mYrsAAAAAAAAAAMo9wD6l7DE/qNpLvbkhor67jB09Pe3uvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHZPF/UcZXUCUhpRSlIwBbJRN6AOMAXSUR0CLJD238XN1dX2UKGgGaAloD0MIpb3BFyYsWUCUhpRSlGgVTegDaBZHQIsq3x8UmD11fZQoaAZoCWgPQwj4HFiOEJ1gQJSGlFKUaBVN6ANoFkdAiysLmITGpHV9lChoBmgJaA9DCE6XxcTm0FpAlIaUUpRoFU3oA2gWR0CLK/+hoM8YdX2UKGgGaAloD0MIKxiV1AkfYECUhpRSlGgVTegDaBZHQIsvMFr2xpt1fZQoaAZoCWgPQwgjZYuk3fBYQJSGlFKUaBVN6ANoFkdAizIEeIVM23V9lChoBmgJaA9DCCO9qN2vMFpAlIaUUpRoFU3oA2gWR0CLNfeu3c59dX2UKGgGaAloD0MIDd5X5UK1ZUCUhpRSlGgVTeEBaBZHQItGG3H7xd91fZQoaAZoCWgPQwhQjZduElthQJSGlFKUaBVN6ANoFkdAi1hw482aUnV9lChoBmgJaA9DCNWUZB0OvmpAlIaUUpRoFU06A2gWR0CLcCFJQLuydX2UKGgGaAloD0MISg1tADZaWECUhpRSlGgVTegDaBZHQIt0mOU+s5p1fZQoaAZoCWgPQwh9lBEXgFldQJSGlFKUaBVN6ANoFkdAi30gfdRBNXV9lChoBmgJaA9DCBbcD3hgDVlAlIaUUpRoFU3oA2gWR0CLf6cawUxmdX2UKGgGaAloD0MIKT+p9unxV0CUhpRSlGgVTegDaBZHQIuA8QI2OyV1fZQoaAZoCWgPQwjByTZwB49ZQJSGlFKUaBVN6ANoFkdAi4HMPJ7swHV9lChoBmgJaA9DCGa9GMqJ2l9AlIaUUpRoFU3oA2gWR0CLk23qiXY2dX2UKGgGaAloD0MI78hYbf4eYUCUhpRSlGgVTegDaBZHQIu9TDjzZpV1fZQoaAZoCWgPQwiCqPsApDhIQJSGlFKUaBVN6ANoFkdAi8PSOzY29HV9lChoBmgJaA9DCB8OEqJ8vVVAlIaUUpRoFU3oA2gWR0CLw/0eU6gedX2UKGgGaAloD0MIeQQ3UrYuX0CUhpRSlGgVTegDaBZHQIvE8G1QZXN1fZQoaAZoCWgPQwitNZTai2ZUQJSGlFKUaBVN6ANoFkdAi8feF10T13V9lChoBmgJaA9DCOOItfgUpFlAlIaUUpRoFU3oA2gWR0CMh/6P8yeqdX2UKGgGaAloD0MISDfCoiLvW0CUhpRSlGgVTegDaBZHQIyL3pIMBp51fZQoaAZoCWgPQwirQZjbPWhqQJSGlFKUaBVNggNoFkdAjI7+TFERa3V9lChoBmgJaA9DCAWIghlT1llAlIaUUpRoFU3oA2gWR0CMqs/GlyimdX2UKGgGaAloD0MIamyvBb3kWkCUhpRSlGgVTegDaBZHQIzADhm5Dqp1fZQoaAZoCWgPQwiR0QFJ2HteQJSGlFKUaBVN6ANoFkdAjMPCk43m3nV9lChoBmgJaA9DCHE7NCxGm1lAlIaUUpRoFU3oA2gWR0CMyx/FR51OdX2UKGgGaAloD0MI8lzfh4MgYECUhpRSlGgVTegDaBZHQIzNL0WdmQN1fZQoaAZoCWgPQwizsRLzrIJcQJSGlFKUaBVN6ANoFkdAjM45x7zClHV9lChoBmgJaA9DCPMhqBq9z1hAlIaUUpRoFU3oA2gWR0CMzupvP1L8dX2UKGgGaAloD0MIwJXs2Ah0V0CUhpRSlGgVTegDaBZHQIzduZ5Rjz91fZQoaAZoCWgPQwidSgaAql5pQJSGlFKUaBVN6wFoFkdAjOzd0Rvm5nV9lChoBmgJaA9DCPZ9OEiIkjFAlIaUUpRoFU0rAWgWR0CM8aUu+RHPdX2UKGgGaAloD0MI5bm+Dwc1O8CUhpRSlGgVTToBaBZHQIz0r0th/iJ1fZQoaAZoCWgPQwiSzsDIy4hVQJSGlFKUaBVN6ANoFkdAjP+smWt2cXV9lChoBmgJaA9DCL8K8N3mQWBAlIaUUpRoFU3oA2gWR0CNBJYp2ECedX2UKGgGaAloD0MIYASNmcQWYUCUhpRSlGgVTegDaBZHQI0Eu3+dbxF1fZQoaAZoCWgPQwjHRiBe12FSQJSGlFKUaBVN6ANoFkdAjQV+irT6SHV9lChoBmgJaA9DCHjvqDEhCVRAlIaUUpRoFU3oA2gWR0CNB8pda+vhdX2UKGgGaAloD0MITS7GwDrIWUCUhpRSlGgVTegDaBZHQI0J2kYXO4Z1fZQoaAZoCWgPQwgxX16A/TlhQJSGlFKUaBVN6ANoFkdAjQzckUsWf3V9lChoBmgJaA9DCHy3eeMkBGBAlIaUUpRoFU3oA2gWR0CNDyhmGucMdX2UKGgGaAloD0MItJCA0eXlLUCUhpRSlGgVTSwBaBZHQI0QgjY7JXB1fZQoaAZoCWgPQwjxvFRszOVdQJSGlFKUaBVN6ANoFkdAjTj6Vt4zJ3V9lChoBmgJaA9DCFkZjXxeUF9AlIaUUpRoFU3oA2gWR0CNPJRZ2ZAqdX2UKGgGaAloD0MIRbsKKT/ZW0CUhpRSlGgVTegDaBZHQI1D47HQyAR1fZQoaAZoCWgPQwh6bqErEfNeQJSGlFKUaBVN6ANoFkdAjUfP4dp7C3V9lChoBmgJaA9DCEf/y7Vok1RAlIaUUpRoFU3oA2gWR0CNWQBas6q9dX2UKGgGaAloD0MIiEuOO6WdWECUhpRSlGgVTegDaBZHQI1t+yTpxFR1fZQoaAZoCWgPQwhkk/yIXxEHQJSGlFKUaBVNPgFoFkdAjW6GtyPuHHV9lChoBmgJaA9DCB3J5T8kzWFAlIaUUpRoFU3oA2gWR0CNcQV2zOX3dX2UKGgGaAloD0MIGXEBaJSlX0CUhpRSlGgVTegDaBZHQI1707uDzy11fZQoaAZoCWgPQwjy7PKtDy9hQJSGlFKUaBVN6ANoFkdAjYBkxREWqXV9lChoBmgJaA9DCNDv+zcvK2FAlIaUUpRoFU3oA2gWR0CNgIqEOAiFdX2UKGgGaAloD0MIO1J95xd6XkCUhpRSlGgVTegDaBZHQI2BTrcCYC11fZQoaAZoCWgPQwgsflNYqflrQJSGlFKUaBVNQgFoFkdAjYNJdjXnQ3V9lChoBmgJaA9DCFDIztvYw15AlIaUUpRoFU3oA2gWR0CNg4Uu+RHPdX2UKGgGaAloD0MICB7f3jVNVUCUhpRSlGgVTegDaBZHQI2FhuCPIXF1fZQoaAZoCWgPQwisH5vkR2ZWQJSGlFKUaBVN6ANoFkdAjYiISDh99nV9lChoBmgJaA9DCD2CGynbgmZAlIaUUpRoFU17AmgWR0COSLJJXhfjdX2UKGgGaAloD0MIq7TFNb5OYUCUhpRSlGgVTegDaBZHQI5I5Ire67N1fZQoaAZoCWgPQwhRg2kYPrZnQJSGlFKUaBVN6ANoFkdAjkohPbfxc3V9lChoBmgJaA9DCC5VaYvrCGtAlIaUUpRoFU2hAWgWR0COW5LL6k6+dX2UKGgGaAloD0MIp1g1CHMGbUCUhpRSlGgVTXoBaBZHQI5mZkd3jdZ1fZQoaAZoCWgPQwh/g/bqYyFhQJSGlFKUaBVN6ANoFkdAjnh0U47zTXV9lChoBmgJaA9DCOli00ohplxAlIaUUpRoFU3oA2gWR0COhZ36AOJ+dX2UKGgGaAloD0MIBHCzeLEgFkCUhpRSlGgVTREBaBZHQI6SGmYSg5B1fZQoaAZoCWgPQwjvVMA9z59cQJSGlFKUaBVN6ANoFkdAjrZ+s5n14HV9lChoBmgJaA9DCLq+DwcJnl5AlIaUUpRoFU3oA2gWR0COtzWd3B55dX2UKGgGaAloD0MIwtuDEJASXUCUhpRSlGgVTegDaBZHQI7IhOLzf791fZQoaAZoCWgPQwgDQYAMHf9hQJSGlFKUaBVN6ANoFkdAjs68gyM1j3V9lChoBmgJaA9DCLwEpz6QE1pAlIaUUpRoFU3oA2gWR0COz7t4RmK7dX2UKGgGaAloD0MIaqSl8nZsVUCUhpRSlGgVTegDaBZHQI7SutyPuG91fZQoaAZoCWgPQwh1ApoIGyJpQJSGlFKUaBVNdwFoFkdAjtLAE+xGD3V9lChoBmgJaA9DCNHrT+JzvFpAlIaUUpRoFU3oA2gWR0CO0wldC3PSdX2UKGgGaAloD0MI4srZO6MAYkCUhpRSlGgVTegDaBZHQI7VyYPXkHV1fZQoaAZoCWgPQwjrVWR0QJlZQJSGlFKUaBVN6ANoFkdAjtm4Ny5qd3V9lChoBmgJaA9DCPmFV5I87V9AlIaUUpRoFU3oA2gWR0CO3G+XZ5AydX2UKGgGaAloD0MI/aGZJ9caXECUhpRSlGgVTegDaBZHQI7cqbz9S/F1fZQoaAZoCWgPQwjVlGQdjtZbQJSGlFKUaBVN6ANoFkdAjt5IfCAMD3V9lChoBmgJaA9DCOQxA5XxnyjAlIaUUpRoFUvsaBZHQI7q8qnWJ791fZQoaAZoCWgPQwgTmiSWlAsQQJSGlFKUaBVNGwFoFkdAjuuEK/mDDnV9lChoBmgJaA9DCPG9v0F7eVtAlIaUUpRoFU3oA2gWR0CO8nOPeYUndX2UKGgGaAloD0MI+pl63aLMZ0CUhpRSlGgVTTIDaBZHQI70GgBcRlJ1fZQoaAZoCWgPQwit30xMF6IywJSGlFKUaBVL92gWR0CO+v5HmRvFdX2UKGgGaAloD0MIPiZSms1nVECUhpRSlGgVTegDaBZHQI8bYxN7Bwd1fZQoaAZoCWgPQwjFOerouPxnQJSGlFKUaBVNfgFoFkdAjzC8mrsByXV9lChoBmgJaA9DCPHXZI36M2tAlIaUUpRoFU3oAWgWR0CPTNTqjaf0dX2UKGgGaAloD0MIq3ZNSGulWUCUhpRSlGgVTegDaBZHQI9NDtmcvuh1fZQoaAZoCWgPQwhtcCL6tSxfQJSGlFKUaBVN6ANoFkdAj0268QI2O3V9lChoBmgJaA9DCJ9afXVVu1pAlIaUUpRoFU3oA2gWR0CPYpytFKChdX2UKGgGaAloD0MIR1oqb0fNXUCUhpRSlGgVTegDaBZHQI9mY5Lh73R1fZQoaAZoCWgPQwhNMJxrmLRbQJSGlFKUaBVN6ANoFkdAj2Zm3OObRXV9lChoBmgJaA9DCL4Ts14MfWBAlIaUUpRoFU3oA2gWR0CPZrBeokzHdX2UKGgGaAloD0MIcv4mFCI9XUCUhpRSlGgVTegDaBZHQI9pWVgQYk51fZQoaAZoCWgPQwjwbmWJzrlgQJSGlFKUaBVN6ANoFkdAj21WXb/OuHV9lChoBmgJaA9DCFXcuMX8zDVAlIaUUpRoFUvmaBZHQI9uxkmQbMp1fZQoaAZoCWgPQwj6JeKt8/pgQJSGlFKUaBVN6ANoFkdAj3AtdqtYCHV9lChoBmgJaA9DCLqEQ29x2mBAlIaUUpRoFU3oA2gWR0CPcHYgaFVUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee09fb466f9b19b0fe8e43108fe9f0eb9ecc07f6ed5c884dd381597de03a0f16
3
+ size 144106
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb35563dd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb35563e60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb35563ef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb35563f80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbb3556c050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbb3556c0e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb3556c170>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbb3556c200>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb3556c290>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb3556c320>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb3556c3b0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fbb355a5f00>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651768236.8821146,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1/yD04E+Q87vaEvUtHMb4dG+K82okJvQAAAAAAAAAAM2R6PreXjj/m8d0+QdJKvmz0gT4o30k+AAAAAAAAAADznOU9jxp3utBGHjwMn8E7jM8Ru43mTTwAAIA/AACAP1op1D0QWXk/yS7JPVPyur7K2DA9Nc1lvQAAAAAAAAAATa0kPbi2ubldtLU5vq26NF3U4rm4hdq4AACAPwAAgD/ATL+9j85ruvblvbuKpJM263xhuwg0BLYAAIA/AACAP+ahpz1bUbs9g+awPEALNb5ONuq8Lhz/vAAAAAAAAAAAdffCvpxl3D6il0M94KZMvsJL1LyohTe8AAAAAAAAAACzkaK9nwKiP7CdRL7fmuO+2fNVvWYpyDwAAAAAAAAAAOZXIT4wdz4/Yi1/PQdbD75X0XY9TkhIPQAAAAAAAAAAAPIAvERVpD8K6tW8W0itvv38Qjz2yW28AAAAAAAAAABAxLA+GCiKPa9MMroPgv64w3GNPlpsVjkAAIA/AACAP62wxr6XSgg/SKaMvUDtfL7xo6y8u6DrvQAAAAAAAAAAJTaFvtTwFL2CTSs7JvjmOUBugD5tSV+6AACAPwAAgD9N+Eo9jTwwP4cpvT3WVmG+YfZ0PT7mYrsAAAAAAAAAAMo9wD6l7DE/qNpLvbkhor67jB09Pe3uvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHZPF/UcZXUCUhpRSlIwBbJRN6AOMAXSUR0CLJD238XN1dX2UKGgGaAloD0MIpb3BFyYsWUCUhpRSlGgVTegDaBZHQIsq3x8UmD11fZQoaAZoCWgPQwj4HFiOEJ1gQJSGlFKUaBVN6ANoFkdAiysLmITGpHV9lChoBmgJaA9DCE6XxcTm0FpAlIaUUpRoFU3oA2gWR0CLK/+hoM8YdX2UKGgGaAloD0MIKxiV1AkfYECUhpRSlGgVTegDaBZHQIsvMFr2xpt1fZQoaAZoCWgPQwgjZYuk3fBYQJSGlFKUaBVN6ANoFkdAizIEeIVM23V9lChoBmgJaA9DCCO9qN2vMFpAlIaUUpRoFU3oA2gWR0CLNfeu3c59dX2UKGgGaAloD0MIDd5X5UK1ZUCUhpRSlGgVTeEBaBZHQItGG3H7xd91fZQoaAZoCWgPQwhQjZduElthQJSGlFKUaBVN6ANoFkdAi1hw482aUnV9lChoBmgJaA9DCNWUZB0OvmpAlIaUUpRoFU06A2gWR0CLcCFJQLuydX2UKGgGaAloD0MISg1tADZaWECUhpRSlGgVTegDaBZHQIt0mOU+s5p1fZQoaAZoCWgPQwh9lBEXgFldQJSGlFKUaBVN6ANoFkdAi30gfdRBNXV9lChoBmgJaA9DCBbcD3hgDVlAlIaUUpRoFU3oA2gWR0CLf6cawUxmdX2UKGgGaAloD0MIKT+p9unxV0CUhpRSlGgVTegDaBZHQIuA8QI2OyV1fZQoaAZoCWgPQwjByTZwB49ZQJSGlFKUaBVN6ANoFkdAi4HMPJ7swHV9lChoBmgJaA9DCGa9GMqJ2l9AlIaUUpRoFU3oA2gWR0CLk23qiXY2dX2UKGgGaAloD0MI78hYbf4eYUCUhpRSlGgVTegDaBZHQIu9TDjzZpV1fZQoaAZoCWgPQwiCqPsApDhIQJSGlFKUaBVN6ANoFkdAi8PSOzY29HV9lChoBmgJaA9DCB8OEqJ8vVVAlIaUUpRoFU3oA2gWR0CLw/0eU6gedX2UKGgGaAloD0MIeQQ3UrYuX0CUhpRSlGgVTegDaBZHQIvE8G1QZXN1fZQoaAZoCWgPQwitNZTai2ZUQJSGlFKUaBVN6ANoFkdAi8feF10T13V9lChoBmgJaA9DCOOItfgUpFlAlIaUUpRoFU3oA2gWR0CMh/6P8yeqdX2UKGgGaAloD0MISDfCoiLvW0CUhpRSlGgVTegDaBZHQIyL3pIMBp51fZQoaAZoCWgPQwirQZjbPWhqQJSGlFKUaBVNggNoFkdAjI7+TFERa3V9lChoBmgJaA9DCAWIghlT1llAlIaUUpRoFU3oA2gWR0CMqs/GlyimdX2UKGgGaAloD0MIamyvBb3kWkCUhpRSlGgVTegDaBZHQIzADhm5Dqp1fZQoaAZoCWgPQwiR0QFJ2HteQJSGlFKUaBVN6ANoFkdAjMPCk43m3nV9lChoBmgJaA9DCHE7NCxGm1lAlIaUUpRoFU3oA2gWR0CMyx/FR51OdX2UKGgGaAloD0MI8lzfh4MgYECUhpRSlGgVTegDaBZHQIzNL0WdmQN1fZQoaAZoCWgPQwizsRLzrIJcQJSGlFKUaBVN6ANoFkdAjM45x7zClHV9lChoBmgJaA9DCPMhqBq9z1hAlIaUUpRoFU3oA2gWR0CMzupvP1L8dX2UKGgGaAloD0MIwJXs2Ah0V0CUhpRSlGgVTegDaBZHQIzduZ5Rjz91fZQoaAZoCWgPQwidSgaAql5pQJSGlFKUaBVN6wFoFkdAjOzd0Rvm5nV9lChoBmgJaA9DCPZ9OEiIkjFAlIaUUpRoFU0rAWgWR0CM8aUu+RHPdX2UKGgGaAloD0MI5bm+Dwc1O8CUhpRSlGgVTToBaBZHQIz0r0th/iJ1fZQoaAZoCWgPQwiSzsDIy4hVQJSGlFKUaBVN6ANoFkdAjP+smWt2cXV9lChoBmgJaA9DCL8K8N3mQWBAlIaUUpRoFU3oA2gWR0CNBJYp2ECedX2UKGgGaAloD0MIYASNmcQWYUCUhpRSlGgVTegDaBZHQI0Eu3+dbxF1fZQoaAZoCWgPQwjHRiBe12FSQJSGlFKUaBVN6ANoFkdAjQV+irT6SHV9lChoBmgJaA9DCHjvqDEhCVRAlIaUUpRoFU3oA2gWR0CNB8pda+vhdX2UKGgGaAloD0MITS7GwDrIWUCUhpRSlGgVTegDaBZHQI0J2kYXO4Z1fZQoaAZoCWgPQwgxX16A/TlhQJSGlFKUaBVN6ANoFkdAjQzckUsWf3V9lChoBmgJaA9DCHy3eeMkBGBAlIaUUpRoFU3oA2gWR0CNDyhmGucMdX2UKGgGaAloD0MItJCA0eXlLUCUhpRSlGgVTSwBaBZHQI0QgjY7JXB1fZQoaAZoCWgPQwjxvFRszOVdQJSGlFKUaBVN6ANoFkdAjTj6Vt4zJ3V9lChoBmgJaA9DCFkZjXxeUF9AlIaUUpRoFU3oA2gWR0CNPJRZ2ZAqdX2UKGgGaAloD0MIRbsKKT/ZW0CUhpRSlGgVTegDaBZHQI1D47HQyAR1fZQoaAZoCWgPQwh6bqErEfNeQJSGlFKUaBVN6ANoFkdAjUfP4dp7C3V9lChoBmgJaA9DCEf/y7Vok1RAlIaUUpRoFU3oA2gWR0CNWQBas6q9dX2UKGgGaAloD0MIiEuOO6WdWECUhpRSlGgVTegDaBZHQI1t+yTpxFR1fZQoaAZoCWgPQwhkk/yIXxEHQJSGlFKUaBVNPgFoFkdAjW6GtyPuHHV9lChoBmgJaA9DCB3J5T8kzWFAlIaUUpRoFU3oA2gWR0CNcQV2zOX3dX2UKGgGaAloD0MIGXEBaJSlX0CUhpRSlGgVTegDaBZHQI1707uDzy11fZQoaAZoCWgPQwjy7PKtDy9hQJSGlFKUaBVN6ANoFkdAjYBkxREWqXV9lChoBmgJaA9DCNDv+zcvK2FAlIaUUpRoFU3oA2gWR0CNgIqEOAiFdX2UKGgGaAloD0MIO1J95xd6XkCUhpRSlGgVTegDaBZHQI2BTrcCYC11fZQoaAZoCWgPQwgsflNYqflrQJSGlFKUaBVNQgFoFkdAjYNJdjXnQ3V9lChoBmgJaA9DCFDIztvYw15AlIaUUpRoFU3oA2gWR0CNg4Uu+RHPdX2UKGgGaAloD0MICB7f3jVNVUCUhpRSlGgVTegDaBZHQI2FhuCPIXF1fZQoaAZoCWgPQwisH5vkR2ZWQJSGlFKUaBVN6ANoFkdAjYiISDh99nV9lChoBmgJaA9DCD2CGynbgmZAlIaUUpRoFU17AmgWR0COSLJJXhfjdX2UKGgGaAloD0MIq7TFNb5OYUCUhpRSlGgVTegDaBZHQI5I5Ire67N1fZQoaAZoCWgPQwhRg2kYPrZnQJSGlFKUaBVN6ANoFkdAjkohPbfxc3V9lChoBmgJaA9DCC5VaYvrCGtAlIaUUpRoFU2hAWgWR0COW5LL6k6+dX2UKGgGaAloD0MIp1g1CHMGbUCUhpRSlGgVTXoBaBZHQI5mZkd3jdZ1fZQoaAZoCWgPQwh/g/bqYyFhQJSGlFKUaBVN6ANoFkdAjnh0U47zTXV9lChoBmgJaA9DCOli00ohplxAlIaUUpRoFU3oA2gWR0COhZ36AOJ+dX2UKGgGaAloD0MIBHCzeLEgFkCUhpRSlGgVTREBaBZHQI6SGmYSg5B1fZQoaAZoCWgPQwjvVMA9z59cQJSGlFKUaBVN6ANoFkdAjrZ+s5n14HV9lChoBmgJaA9DCLq+DwcJnl5AlIaUUpRoFU3oA2gWR0COtzWd3B55dX2UKGgGaAloD0MIwtuDEJASXUCUhpRSlGgVTegDaBZHQI7IhOLzf791fZQoaAZoCWgPQwgDQYAMHf9hQJSGlFKUaBVN6ANoFkdAjs68gyM1j3V9lChoBmgJaA9DCLwEpz6QE1pAlIaUUpRoFU3oA2gWR0COz7t4RmK7dX2UKGgGaAloD0MIaqSl8nZsVUCUhpRSlGgVTegDaBZHQI7SutyPuG91fZQoaAZoCWgPQwh1ApoIGyJpQJSGlFKUaBVNdwFoFkdAjtLAE+xGD3V9lChoBmgJaA9DCNHrT+JzvFpAlIaUUpRoFU3oA2gWR0CO0wldC3PSdX2UKGgGaAloD0MI4srZO6MAYkCUhpRSlGgVTegDaBZHQI7VyYPXkHV1fZQoaAZoCWgPQwjrVWR0QJlZQJSGlFKUaBVN6ANoFkdAjtm4Ny5qd3V9lChoBmgJaA9DCPmFV5I87V9AlIaUUpRoFU3oA2gWR0CO3G+XZ5AydX2UKGgGaAloD0MI/aGZJ9caXECUhpRSlGgVTegDaBZHQI7cqbz9S/F1fZQoaAZoCWgPQwjVlGQdjtZbQJSGlFKUaBVN6ANoFkdAjt5IfCAMD3V9lChoBmgJaA9DCOQxA5XxnyjAlIaUUpRoFUvsaBZHQI7q8qnWJ791fZQoaAZoCWgPQwgTmiSWlAsQQJSGlFKUaBVNGwFoFkdAjuuEK/mDDnV9lChoBmgJaA9DCPG9v0F7eVtAlIaUUpRoFU3oA2gWR0CO8nOPeYUndX2UKGgGaAloD0MI+pl63aLMZ0CUhpRSlGgVTTIDaBZHQI70GgBcRlJ1fZQoaAZoCWgPQwit30xMF6IywJSGlFKUaBVL92gWR0CO+v5HmRvFdX2UKGgGaAloD0MIPiZSms1nVECUhpRSlGgVTegDaBZHQI8bYxN7Bwd1fZQoaAZoCWgPQwjFOerouPxnQJSGlFKUaBVNfgFoFkdAjzC8mrsByXV9lChoBmgJaA9DCPHXZI36M2tAlIaUUpRoFU3oAWgWR0CPTNTqjaf0dX2UKGgGaAloD0MIq3ZNSGulWUCUhpRSlGgVTegDaBZHQI9NDtmcvuh1fZQoaAZoCWgPQwhtcCL6tSxfQJSGlFKUaBVN6ANoFkdAj0268QI2O3V9lChoBmgJaA9DCJ9afXVVu1pAlIaUUpRoFU3oA2gWR0CPYpytFKChdX2UKGgGaAloD0MIR1oqb0fNXUCUhpRSlGgVTegDaBZHQI9mY5Lh73R1fZQoaAZoCWgPQwhNMJxrmLRbQJSGlFKUaBVN6ANoFkdAj2Zm3OObRXV9lChoBmgJaA9DCL4Ts14MfWBAlIaUUpRoFU3oA2gWR0CPZrBeokzHdX2UKGgGaAloD0MIcv4mFCI9XUCUhpRSlGgVTegDaBZHQI9pWVgQYk51fZQoaAZoCWgPQwjwbmWJzrlgQJSGlFKUaBVN6ANoFkdAj21WXb/OuHV9lChoBmgJaA9DCFXcuMX8zDVAlIaUUpRoFUvmaBZHQI9uxkmQbMp1fZQoaAZoCWgPQwj6JeKt8/pgQJSGlFKUaBVN6ANoFkdAj3AtdqtYCHV9lChoBmgJaA9DCLqEQ29x2mBAlIaUUpRoFU3oA2gWR0CPcHYgaFVUdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 160,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b550e38aa8dad65aaf117bef325baf22c7a8b24bad0290d2b426efd4328e275
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4d88340d8ca5e2a78e1bdc2dcb650f54f5be3acc58423da4c71d74fb7767881
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dcf18d7eaa393bcb8e6c0b9556ec6c61b4512f3172b375e73a381ab9b57803e
3
+ size 253195
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 215.26581240420427, "std_reward": 12.71646468962256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T17:00:52.288287"}