File size: 2,080 Bytes
816469e 3bbeaa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: apache-2.0
datasets:
- togethercomputer/RedPajama-Data-1T
language:
- en
pipeline_tag: text-generation
library_name: transformers
---
## PDS-160M
[paper](https://arxiv.org/abs/2410.07064) | [code](https://github.com/microsoft/LMOps/tree/main/data_selection)
**PDS-160M** is a 160M model with [Mistral](https://arxiv.org/abs/2310.06825) achitecture pre-trained from scratch on the data selected from the CC split of [Redpajama](https://github.com/togethercomputer/RedPajama-Data), using the PDS framework.
The PDS framework is based on the [Pontryagin's maximum principle](https://en.wikipedia.org/wiki/Pontryagin%27s_maximum_principle#:~:text=Pontryagin's%20maximum%20principle%20is%20used,the%20state%20or%20input%20controls.) for optimal pre-training data selection, which not only enjoy strong theoretical support but is also scalable for training large language models.
Please refer to our [paper](https://arxiv.org/abs/2410.07064) for more details.
### Overview of the theory:
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/Hdw83Vsb305GRlsqB7c34.png" width="700">
</p>
### Overview of the PDS framework:
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/YPwluLyZGK7DACH1WqDUN.png" width="700">
</p>
### Evaluation
PDS-selected data improves the performance of language models pre-trained from scratch and saves pre-training comptation. The improvement scales up to large model sizes.
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/6undIr37d10qD73TDiPDK.png" width="600">
</p>
### Baseline
[Conventional Pre-training](https://huggingface.co/Data-Selection/BSL-160M)
### Citation
```bibtex
@article{gu2024data,
title={Data Selection via Optimal Control for Language Models},
author={Gu, Yuxian and Dong, Li and Wang, Hongning and Hao, Yaru and Dong, Qingxiu and Wei, Furu and Huang, Minlie},
journal={arXiv preprint arXiv:2410.07064},
year={2024}
}
```
|