patrickvonplaten
commited on
Commit
·
744adff
1
Parent(s):
eb2a9f7
Update README.md
Browse files
README.md
CHANGED
@@ -36,7 +36,7 @@ model-index:
|
|
36 |
|
37 |
type: common_voice
|
38 |
|
39 |
-
args:
|
40 |
|
41 |
metrics:
|
42 |
|
@@ -82,11 +82,11 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
82 |
|
83 |
def speech_file_to_array_fn(batch):
|
84 |
|
85 |
-
|
86 |
|
87 |
-
|
88 |
|
89 |
-
|
90 |
|
91 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
92 |
|
@@ -94,7 +94,7 @@ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tens
|
|
94 |
|
95 |
with torch.no_grad():
|
96 |
|
97 |
-
|
98 |
|
99 |
predicted_ids = torch.argmax(logits, dim=-1)
|
100 |
|
@@ -130,7 +130,7 @@ model = Wav2Vec2ForCTC.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuan
|
|
130 |
|
131 |
model.to("cuda")
|
132 |
|
133 |
-
chars_to_ignore_regex = '[
|
134 |
|
135 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
136 |
|
@@ -140,13 +140,13 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
140 |
|
141 |
def speech_file_to_array_fn(batch):
|
142 |
|
143 |
-
|
144 |
|
145 |
-
|
146 |
|
147 |
-
|
148 |
|
149 |
-
|
150 |
|
151 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
152 |
|
@@ -156,17 +156,17 @@ test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
156 |
|
157 |
def evaluate(batch):
|
158 |
|
159 |
-
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
164 |
|
165 |
pred_ids = torch.argmax(logits, dim=-1)
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
170 |
|
171 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
172 |
|
|
|
36 |
|
37 |
type: common_voice
|
38 |
|
39 |
+
args: lt
|
40 |
|
41 |
metrics:
|
42 |
|
|
|
82 |
|
83 |
def speech_file_to_array_fn(batch):
|
84 |
|
85 |
+
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
86 |
|
87 |
+
\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
88 |
|
89 |
+
\\treturn batch
|
90 |
|
91 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
92 |
|
|
|
94 |
|
95 |
with torch.no_grad():
|
96 |
|
97 |
+
\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
98 |
|
99 |
predicted_ids = torch.argmax(logits, dim=-1)
|
100 |
|
|
|
130 |
|
131 |
model.to("cuda")
|
132 |
|
133 |
+
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]'
|
134 |
|
135 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
136 |
|
|
|
140 |
|
141 |
def speech_file_to_array_fn(batch):
|
142 |
|
143 |
+
\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
144 |
|
145 |
+
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
146 |
|
147 |
+
\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
148 |
|
149 |
+
\\treturn batch
|
150 |
|
151 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
152 |
|
|
|
156 |
|
157 |
def evaluate(batch):
|
158 |
|
159 |
+
\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
160 |
|
161 |
+
\\twith torch.no_grad():
|
162 |
|
163 |
+
\\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
164 |
|
165 |
pred_ids = torch.argmax(logits, dim=-1)
|
166 |
|
167 |
+
\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
168 |
|
169 |
+
\\treturn batch
|
170 |
|
171 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
172 |
|