|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import Any, List, Optional, Tuple, Union |
|
|
|
import torchvision.transforms as T |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
import torch.utils.checkpoint |
|
import transformers |
|
|
|
from .modeling_internlm2 import InternLM2ForCausalLM |
|
from .modeling_phi3 import Phi3ForCausalLM |
|
from peft import LoraConfig, get_peft_model |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, |
|
LlamaTokenizer, Qwen2ForCausalLM) |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ModelOutput, logging |
|
from transformers import StoppingCriteriaList, StoppingCriteria |
|
|
|
from .configuration_sa2va_chat import Sa2VAChatConfig |
|
from .modeling_intern_vit import InternVisionModel, has_flash_attn |
|
|
|
from .sam2 import SAM2 |
|
from .templates import PROMPT_TEMPLATE |
|
|
|
import numpy as np |
|
from torchvision.transforms.functional import resize, to_pil_image |
|
|
|
from types import MethodType |
|
import torch.nn.functional as F |
|
|
|
try: |
|
from .flash_attention import FlashAttention |
|
has_flash_attn = True |
|
except: |
|
print('FlashAttention is not installed.') |
|
has_flash_attn = False |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def version_cmp(v1, v2, op='eq'): |
|
import operator |
|
|
|
from packaging import version |
|
op_func = getattr(operator, op) |
|
return op_func(version.parse(v1), version.parse(v2)) |
|
|
|
class StopWordStoppingCriteria(StoppingCriteria): |
|
"""StopWord stopping criteria.""" |
|
|
|
def __init__(self, tokenizer, stop_word): |
|
self.tokenizer = tokenizer |
|
self.stop_word = stop_word |
|
self.length = len(self.stop_word) |
|
|
|
def __call__(self, input_ids, *args, **kwargs) -> bool: |
|
cur_text = self.tokenizer.decode(input_ids[0]) |
|
cur_text = cur_text.replace('\r', '').replace('\n', '') |
|
return cur_text[-self.length:] == self.stop_word |
|
|
|
def get_stop_criteria( |
|
tokenizer, |
|
stop_words=[], |
|
): |
|
stop_criteria = StoppingCriteriaList() |
|
for word in stop_words: |
|
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word)) |
|
return stop_criteria |
|
|
|
class DirectResize: |
|
def __init__(self, target_length: int) -> None: |
|
self.target_length = target_length |
|
|
|
def apply_image(self, image: np.ndarray) -> np.ndarray: |
|
""" |
|
Expects a numpy array with shape HxWxC in uint8 format. |
|
""" |
|
img = to_pil_image(image, mode='RGB') |
|
return np.array(img.resize((self.target_length, self.target_length))) |
|
|
|
class Sa2VAChatModel(PreTrainedModel): |
|
config_class = Sa2VAChatConfig |
|
main_input_name = 'pixel_values' |
|
base_model_prefix = 'language_model' |
|
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer', |
|
'Phi3DecoderLayer', 'Qwen2DecoderLayer', 'SAM2'] |
|
_supports_flash_attn_2 = True |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config: Sa2VAChatConfig, vision_model=None, language_model=None, use_flash_attn=True): |
|
super().__init__(config) |
|
|
|
assert version_cmp(transformers.__version__, '4.37.0', 'ge') |
|
image_size = config.force_image_size or config.vision_config.image_size |
|
patch_size = config.vision_config.patch_size |
|
self.patch_size = patch_size |
|
self.select_layer = config.select_layer |
|
self.template = config.template |
|
self.template = self.template.replace('-', '_') |
|
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) |
|
self.downsample_ratio = config.downsample_ratio |
|
self.ps_version = config.ps_version |
|
self.llm_arch_name = config.llm_config.architectures[0] |
|
|
|
use_flash_attn = use_flash_attn if has_flash_attn else False |
|
config.vision_config.use_flash_attn = True if use_flash_attn else False |
|
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager' |
|
|
|
logger.info(f'num_image_token: {self.num_image_token}') |
|
logger.info(f'ps_version: {self.ps_version}') |
|
if vision_model is not None: |
|
self.vision_model = vision_model |
|
else: |
|
self.vision_model = InternVisionModel(config.vision_config) |
|
if language_model is not None: |
|
self.language_model = language_model |
|
else: |
|
if config.llm_config.architectures[0] == 'LlamaForCausalLM': |
|
self.language_model = LlamaForCausalLM(config.llm_config) |
|
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': |
|
self.language_model = InternLM2ForCausalLM(config.llm_config) |
|
elif config.llm_config.architectures[0] == 'Phi3ForCausalLM': |
|
self.language_model = Phi3ForCausalLM(config.llm_config) |
|
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM': |
|
self.language_model = Qwen2ForCausalLM(config.llm_config) |
|
else: |
|
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') |
|
|
|
vit_hidden_size = config.vision_config.hidden_size |
|
llm_hidden_size = config.llm_config.hidden_size |
|
|
|
self.mlp1 = nn.Sequential( |
|
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), |
|
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), |
|
nn.GELU(), |
|
nn.Linear(llm_hidden_size, llm_hidden_size) |
|
) |
|
|
|
self.img_context_token_id = None |
|
self.conv_template = PROMPT_TEMPLATE[self.template] |
|
self.template = self.conv_template |
|
if hasattr(config, 'system_message'): |
|
self.system_message = config.system_message |
|
self.num_samples = 0 |
|
|
|
if config.use_backbone_lora: |
|
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora) |
|
|
|
if config.use_llm_lora: |
|
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora) |
|
|
|
self.grounding_encoder = SAM2() |
|
out_dim = self.grounding_encoder.hidden_dim |
|
in_dim = llm_hidden_size |
|
self.text_hidden_fcs = nn.Sequential( |
|
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True), |
|
nn.Linear(in_dim, out_dim), nn.Dropout(0.0) |
|
) |
|
|
|
self.init_prediction_config = False |
|
|
|
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): |
|
lora_config = LoraConfig( |
|
r=r, |
|
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'], |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
) |
|
self.vision_model = get_peft_model(self.vision_model, lora_config) |
|
self.vision_model.print_trainable_parameters() |
|
|
|
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): |
|
|
|
if self.llm_arch_name == 'InternLM2ForCausalLM': |
|
target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3'] |
|
elif self.llm_arch_name == 'Phi3ForCausalLM': |
|
target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj'] |
|
elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']: |
|
target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj', |
|
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'] |
|
else: |
|
raise NotImplemented |
|
lora_config = LoraConfig( |
|
r=r, |
|
target_modules=target_modules, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
task_type='CAUSAL_LM' |
|
) |
|
self.language_model = get_peft_model(self.language_model, lora_config) |
|
self.language_model.enable_input_require_grads() |
|
self.language_model.print_trainable_parameters() |
|
|
|
def pixel_shuffle(self, x, scale_factor=0.5): |
|
n, w, h, c = x.size() |
|
|
|
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) |
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
x = x.view(n, int(h * scale_factor), int(w * scale_factor), |
|
int(c / (scale_factor * scale_factor))) |
|
if self.ps_version == 'v1': |
|
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " |
|
'which results in a transposed image.') |
|
else: |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
return x |
|
|
|
def extract_feature(self, pixel_values): |
|
if self.select_layer == -1: |
|
vit_embeds = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_hidden_states=False, |
|
return_dict=True).last_hidden_state |
|
else: |
|
vit_embeds = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_hidden_states=True, |
|
return_dict=True).hidden_states[self.select_layer] |
|
vit_embeds = vit_embeds[:, 1:, :] |
|
|
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) |
|
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) |
|
vit_embeds = self.mlp1(vit_embeds) |
|
return vit_embeds |
|
|
|
@property |
|
def lm_head(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def forward(self, data, data_samples=None, mode='loss'): |
|
pixel_values = data['pixel_values'] |
|
|
|
if type(pixel_values) is list or pixel_values.ndim == 5: |
|
if type(pixel_values) is list: |
|
pixel_values = [ |
|
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values |
|
] |
|
|
|
concat_images = torch.cat( |
|
[image.to(self.vision_model.dtype) for image in pixel_values], dim=0) |
|
else: |
|
raise NotImplementedError() |
|
|
|
input_ids = data['input_ids'] |
|
position_ids = data['position_ids'] |
|
attention_mask = data['attention_mask'] |
|
|
|
image_flags = torch.sum(concat_images, dim=(1, 2, 3)) != 0 |
|
image_flags = image_flags.long() |
|
|
|
labels = data['labels'] |
|
use_cache = False |
|
|
|
if 'vp_overall_mask' not in data.keys(): |
|
vp_overall_mask = None |
|
else: |
|
vp_overall_mask = data['vp_overall_mask'] |
|
|
|
if 'prompt_masks' in data.keys(): |
|
prompt_masks = data['prompt_masks'] |
|
else: |
|
prompt_masks = None |
|
|
|
outputs = self._llm_forward( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
image_flags=image_flags, |
|
pixel_values=concat_images, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_hidden_states=True, |
|
vp_overall_mask=vp_overall_mask, |
|
prompt_masks=prompt_masks, |
|
) |
|
|
|
return outputs |
|
|
|
def _llm_forward( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
image_flags: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
vp_overall_mask=None, |
|
prompt_masks=None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
return_dict = return_dict if return_dict is not None \ |
|
else self.config.use_return_dict |
|
|
|
image_flags = image_flags.squeeze(-1) |
|
|
|
input_embeds = self.language_model.get_input_embeddings()( |
|
input_ids).clone() |
|
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
vit_embeds = vit_embeds.to(input_embeds.dtype) |
|
fast_vit_embeds = None |
|
|
|
vit_embeds = vit_embeds[image_flags == 1] |
|
vit_batch_size = pixel_values.shape[0] |
|
|
|
B, N, C = input_embeds.shape |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
self._count += 1 |
|
|
|
if vp_overall_mask is not None and prompt_masks is not None: |
|
vp_embeds = [] |
|
vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool() |
|
prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks] |
|
|
|
vp_overall_mask = vp_overall_mask[image_flags == 1] |
|
overall_tile_vit_embeds = vit_embeds[vp_overall_mask] |
|
|
|
i_vp_img = 0 |
|
for i_img in range(len(vit_embeds)): |
|
vp_embeds.append(vit_embeds[i_img].reshape(-1, C)) |
|
if vp_overall_mask[i_img]: |
|
tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C) |
|
objects_prompt_masks = prompt_masks[i_vp_img] |
|
n_obj = len(objects_prompt_masks) |
|
tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1) |
|
objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1) |
|
vp_embeds.append(tile_vit_embeds[objects_prompt_masks]) |
|
i_vp_img += 1 |
|
vp_embeds = torch.cat(vp_embeds, dim=0) |
|
else: |
|
vp_embeds = None |
|
|
|
input_ids = input_ids.reshape(B * N) |
|
selected = (input_ids == self.img_context_token_id) |
|
|
|
if vp_embeds is None: |
|
try: |
|
input_embeds[selected] = vit_embeds.reshape(-1, C) |
|
except Exception as e: |
|
vit_embeds = vit_embeds.reshape(-1, C) |
|
print(f'warning: {e}, input_embeds[selected].shape=' |
|
f'{input_embeds[selected].shape}, ' |
|
f'vit_embeds.shape={vit_embeds.shape}') |
|
n_token = selected.sum() |
|
if n_token > len(vit_embeds): |
|
print(f"Wrong !!! {n_token} image tokens in text but only {len(vit_embeds)} vit embeds !!!") |
|
expand_ratio = n_token // len(vit_embeds) + 1 |
|
vit_embeds = torch.cat([vit_embeds] * expand_ratio, dim=0) |
|
|
|
input_embeds[selected] = vit_embeds[:n_token] |
|
else: |
|
try: |
|
input_embeds[selected] = vp_embeds.reshape(-1, C) |
|
except Exception as e: |
|
vp_embeds = vp_embeds.reshape(-1, C) |
|
print(f'warning: {e}, input_embeds[selected].shape=' |
|
f'{input_embeds[selected].shape}, ' |
|
f'vp_embeds.shape={vp_embeds.shape}') |
|
n_token = selected.sum() |
|
if n_token > len(vp_embeds): |
|
print(f"Wrong !!! {n_token} image tokens in text but only {len(vp_embeds)} vit embeds !!!") |
|
expand_ratio = n_token // len(vp_embeds) + 1 |
|
vp_embeds = torch.cat([vp_embeds] * expand_ratio, dim=0) |
|
|
|
input_embeds[selected] = vp_embeds[:n_token] |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
|
outputs = self.language_model( |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
logits = outputs.logits |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view( |
|
-1, self.language_model.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
input_ids: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
visual_features: Optional[torch.FloatTensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
prompt_masks=None, |
|
vp_overall_mask=None, |
|
**generate_kwargs, |
|
) -> torch.LongTensor: |
|
device = self.device |
|
assert self.img_context_token_id is not None |
|
|
|
if pixel_values is not None: |
|
if visual_features is not None: |
|
vit_embeds = visual_features |
|
else: |
|
if type(pixel_values) is list or pixel_values.ndim == 5: |
|
if type(pixel_values) is list: |
|
pixel_values = [ |
|
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values |
|
] |
|
|
|
pixel_values = torch.cat( |
|
[image.to(self.vision_model.dtype) for image in pixel_values], dim=0) |
|
|
|
vit_embeds = self.extract_feature(pixel_values.to(device)) |
|
image_flags = torch.sum(pixel_values, dim=(1, 2, 3)) != 0 |
|
image_flags = image_flags.long() |
|
vit_embeds = vit_embeds[image_flags == 1] |
|
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids.to(device)) |
|
B, N, C = input_embeds.shape |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
if vp_overall_mask is not None and prompt_masks is not None: |
|
vp_embeds = [] |
|
vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool() |
|
prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks] |
|
|
|
vp_overall_mask = vp_overall_mask[image_flags == 1] |
|
overall_tile_vit_embeds = vit_embeds[vp_overall_mask] |
|
|
|
i_vp_img = 0 |
|
for i_img in range(len(vit_embeds)): |
|
vp_embeds.append(vit_embeds[i_img].reshape(-1, C)) |
|
if vp_overall_mask[i_img]: |
|
tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C) |
|
objects_prompt_masks = prompt_masks[i_vp_img] |
|
n_obj = len(objects_prompt_masks) |
|
tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1) |
|
objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1) |
|
vp_embeds.append(tile_vit_embeds[objects_prompt_masks]) |
|
i_vp_img += 1 |
|
vp_embeds = torch.cat(vp_embeds, dim=0) |
|
else: |
|
vp_embeds = None |
|
|
|
input_ids = input_ids.reshape(B * N) |
|
selected = (input_ids == self.img_context_token_id) |
|
assert selected.sum() != 0 |
|
if vp_embeds is None: |
|
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) |
|
else: |
|
if len(input_embeds[selected]) != len(vp_embeds.reshape(-1, C)): |
|
print("Shape mismatch, selected is {}, vp embeds is {} !!!" \ |
|
.format(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C)))) |
|
min_tokens = min(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C))) |
|
input_embeds[selected][:min_tokens] = vp_embeds.reshape(-1, C)[:min_tokens].to(input_embeds.device) |
|
else: |
|
input_embeds[selected] = vp_embeds.reshape(-1, C).to(input_embeds.device) |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
else: |
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
|
outputs = self.language_model.generate( |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask.to(device), |
|
generation_config=generation_config, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
use_cache=True, |
|
**generate_kwargs, |
|
) |
|
|
|
return outputs |
|
|
|
def preparing_for_generation(self, tokenizer, max_new_tokens=2048, torch_dtype=torch.bfloat16): |
|
|
|
if not hasattr(self, 'tokenizer'): |
|
self.tokenizer = tokenizer |
|
self.bot_name = 'BOT' |
|
stop_words = [] |
|
stop_words += self.template.get('STOP_WORDS', []) |
|
stop_criteria = get_stop_criteria( |
|
tokenizer=self.tokenizer, stop_words=stop_words) |
|
self.stop_criteria = stop_criteria |
|
|
|
default_generation_kwargs = dict( |
|
max_new_tokens=max_new_tokens, |
|
do_sample=False, |
|
eos_token_id=self.tokenizer.eos_token_id, |
|
pad_token_id=( |
|
self.tokenizer.pad_token_id |
|
if self.tokenizer.pad_token_id is not None |
|
else self.tokenizer.eos_token_id |
|
), |
|
) |
|
|
|
self.gen_config = GenerationConfig(**default_generation_kwargs) |
|
self.init_prediction_config = True |
|
self.torch_dtype = torch_dtype |
|
self.to(torch_dtype) |
|
self.extra_image_processor = DirectResize(target_length=1024, ) |
|
|
|
self.min_dynamic_patch = 1 |
|
self.max_dynamic_patch = 12 |
|
self.downsample_ratio = 0.5 |
|
self.image_size = 448 |
|
self.use_thumbnail = True |
|
patch_size = 14 |
|
self.patch_size = patch_size |
|
|
|
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2)) |
|
self.IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
self.IMAGENET_STD = (0.229, 0.224, 0.225) |
|
self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>' |
|
self.IMG_START_TOKEN = '<img>' |
|
self.IMG_END_TOKEN = '</img>' |
|
|
|
self.transformer = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) |
|
]) |
|
self.VP_START_TOKEN = '<vp>' |
|
self.VP_END_TOKEN = '</vp>' |
|
|
|
|
|
if self.config.llm_config.architectures[0] == 'Phi3ForCausalLM': |
|
self.language_model.prepare_inputs_for_generation = MethodType(prepare_inputs_for_generation_phi3, self.language_model) |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids('<IMG_CONTEXT>') |
|
self.img_context_token_id = img_context_token_id |
|
self.seg_token_idx = tokenizer.convert_tokens_to_ids('[SEG]') |
|
return |
|
|
|
def predict_forward( |
|
self, |
|
image=None, |
|
text=None, |
|
past_text='', |
|
mask_prompts=None, |
|
tokenizer=None, |
|
): |
|
if not self.init_prediction_config: |
|
assert tokenizer |
|
self.preparing_for_generation(tokenizer=tokenizer) |
|
|
|
input_dict = {} |
|
|
|
ori_image_size = image.size |
|
|
|
|
|
g_image = np.array(image) |
|
g_image = self.extra_image_processor.apply_image(g_image) |
|
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous().to(self.torch_dtype) |
|
input_dict['g_pixel_values'] = g_pixel_values |
|
|
|
images = dynamic_preprocess(image, self.min_dynamic_patch, |
|
self.max_dynamic_patch, |
|
self.image_size, self.use_thumbnail) |
|
|
|
if mask_prompts is not None: |
|
vp_overall_mask = torch.Tensor([False] * (len(images) - 1) + [True]) |
|
input_dict['vp_overall_mask'] = vp_overall_mask |
|
else: |
|
input_dict['vp_overall_mask'] = None |
|
|
|
pixel_values = [self.transformer(image) for image in images] |
|
pixel_values = torch.stack(pixel_values).to(self.torch_dtype) |
|
input_dict['pixel_values'] = pixel_values |
|
num_image_tokens = pixel_values.shape[0] * self.patch_token |
|
|
|
if mask_prompts is not None: |
|
|
|
mask_prompts = [torch.Tensor(item).to(pixel_values.device) for item in mask_prompts] |
|
mask_prompts = [F.interpolate( |
|
item.unsqueeze(0), |
|
size=(int(self.image_size // self.patch_size * self.downsample_ratio), |
|
int(self.image_size // self.patch_size * self.downsample_ratio)), |
|
mode='nearest').squeeze(0) for item in mask_prompts] |
|
region_pixels = [] |
|
for mask_prompt in mask_prompts[0]: |
|
region_pixels.append(mask_prompt.to(torch.int64).sum()) |
|
|
|
vp_token_str = '\nThere are {} part regions in the picture: '.format(len(mask_prompts[0])) |
|
for i in range(len(mask_prompts[0])): |
|
vp_token_str = vp_token_str + \ |
|
f"region{i + 1}" + self.VP_START_TOKEN + \ |
|
self.IMG_CONTEXT_TOKEN * region_pixels[i] + \ |
|
self.VP_END_TOKEN |
|
if i == len(mask_prompts[0]) - 1: |
|
vp_token_str = vp_token_str + '.\n' |
|
else: |
|
vp_token_str = vp_token_str + ', ' |
|
else: |
|
vp_token_str = '' |
|
|
|
image_token_str = f'{self.IMG_START_TOKEN}' \ |
|
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ |
|
f'{self.IMG_END_TOKEN}' |
|
|
|
ret_masks = [] |
|
|
|
if '<image>' in text or mask_prompts is not None: |
|
assert past_text is None or len(past_text) == 0 |
|
text = text.replace('<image>', image_token_str + vp_token_str) |
|
input_text = '' |
|
input_text += self.template['INSTRUCTION'].format( |
|
input=text, round=1, bot_name=self.bot_name) |
|
input_text = past_text + input_text |
|
ids = self.tokenizer.encode(input_text) |
|
ids = torch.tensor(ids).cuda().unsqueeze(0) |
|
|
|
attention_mask = torch.ones_like(ids, dtype=torch.bool) |
|
|
|
mm_inputs = { |
|
'pixel_values': input_dict['pixel_values'], |
|
'input_ids': ids, |
|
'attention_mask': attention_mask, |
|
'position_ids': None, |
|
'past_key_values': None, |
|
'labels': None, |
|
'prompt_masks': mask_prompts, |
|
'vp_overall_mask': input_dict['vp_overall_mask'], |
|
} |
|
|
|
generate_output = self.generate( |
|
**mm_inputs, |
|
generation_config=self.gen_config, |
|
streamer=None, |
|
bos_token_id=self.tokenizer.bos_token_id, |
|
stopping_criteria=self.stop_criteria, |
|
output_hidden_states=True, |
|
return_dict_in_generate=True |
|
) |
|
predict = self.tokenizer.decode( |
|
generate_output.sequences[0], skip_special_tokens=False).strip() |
|
|
|
|
|
hidden_states = generate_output.hidden_states |
|
last_hidden_states = [item[-1][0] for item in hidden_states] |
|
last_hidden_states = torch.cat(last_hidden_states, dim=0) |
|
seg_hidden_states = get_seg_hidden_states( |
|
last_hidden_states, generate_output.sequences[0][:-1], |
|
seg_id=self.seg_token_idx |
|
) |
|
all_seg_hidden_states = self.text_hidden_fcs(seg_hidden_states) |
|
|
|
for seg_hidden_states in all_seg_hidden_states: |
|
seg_hidden_states = seg_hidden_states.unsqueeze(0) |
|
g_pixel_values = torch.stack([ |
|
self.grounding_encoder.preprocess_image(pixel, dtype=self.torch_dtype) |
|
for pixel in [input_dict['g_pixel_values']]]) |
|
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values) |
|
pred_masks = self.grounding_encoder.inject_language_embd(sam_states, [seg_hidden_states]) |
|
w, h = ori_image_size |
|
masks = F.interpolate(pred_masks, size=(h, w), mode='bilinear', align_corners=False) |
|
masks = masks[:, 0] |
|
masks = masks.sigmoid() > 0.5 |
|
masks = masks.int().cpu() |
|
ret_masks.append(masks) |
|
|
|
return {'prediction': predict, 'prediction_masks': ret_masks,} |
|
|
|
def get_seg_hidden_states(hidden_states, output_ids, seg_id): |
|
seg_mask = output_ids == seg_id |
|
n_out = len(seg_mask) |
|
return hidden_states[-n_out:][seg_mask] |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, |
|
image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(image, |
|
min_num=1, |
|
max_num=6, |
|
image_size=448, |
|
use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = {(i, j) |
|
for n in range(min_num, max_num + 1) |
|
for i in range(1, n + 1) for j in range(1, n + 1) |
|
if i * j <= max_num and i * j >= min_num} |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, |
|
target_ratios, orig_width, |
|
orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ((i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
|
def prepare_inputs_for_generation_phi3( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
max_cache_length = past_key_values.get_max_length() |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get('position_ids', None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
|
|
|
|
if inputs_embeds is not None and (past_key_values is None or len(past_key_values)==0): |
|
model_inputs = {'inputs_embeds': inputs_embeds} |
|
else: |
|
model_inputs = {'input_ids': input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
'position_ids': position_ids, |
|
'past_key_values': past_key_values, |
|
'use_cache': kwargs.get('use_cache'), |
|
'attention_mask': attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
|