File size: 114,089 Bytes
a60b694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 12,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "H-2L-S6b4ukm",
        "outputId": "a13cc6d9-211b-4ad3-d1b3-c1f1bb0d63b3"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.35.2)\n",
            "Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (2.15.0)\n",
            "Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.10/dist-packages (0.19.4)\n",
            "Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.10/dist-packages (2.2.2)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.13.1)\n",
            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.23.5)\n",
            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.2)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2023.6.3)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n",
            "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.15.0)\n",
            "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.1)\n",
            "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.1)\n",
            "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (10.0.1)\n",
            "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n",
            "Requirement already satisfied: dill<0.3.8,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.7)\n",
            "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n",
            "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.4.1)\n",
            "Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.15)\n",
            "Requirement already satisfied: fsspec[http]<=2023.10.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n",
            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.1)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (4.5.0)\n",
            "Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (2.1.0+cu121)\n",
            "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.16.0+cu121)\n",
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.2.2)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.11.4)\n",
            "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (3.8.1)\n",
            "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.1.99)\n",
            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.1.0)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.4)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.0)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
            "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.6)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.11.17)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (1.12)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.2.1)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.1.2)\n",
            "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (2.1.0)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (8.1.7)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (1.3.2)\n",
            "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.3.post1)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers) (3.2.0)\n",
            "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision->sentence-transformers) (9.4.0)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6.0->sentence-transformers) (2.1.3)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6.0->sentence-transformers) (1.3.0)\n"
          ]
        }
      ],
      "source": [
        "pip install transformers datasets huggingface_hub sentence-transformers"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import re\n",
        "import nltk\n",
        "from nltk.corpus import stopwords\n",
        "import torch\n",
        "from torch.utils.data import DataLoader, TensorDataset\n",
        "from transformers import AutoTokenizer, AutoModelForMaskedLM, AdamW\n",
        "import pandas as pd\n",
        "from tqdm import tqdm"
      ],
      "metadata": {
        "id": "Jk533_F14yV8"
      },
      "execution_count": 13,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Load your unlabeled dataset\n",
        "resumes = pd.read_csv('/content/MyResume2.csv')"
      ],
      "metadata": {
        "id": "IR-KIxHd5iyu"
      },
      "execution_count": 14,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "resumes.head(5)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "Y0sgNBwr5mzH",
        "outputId": "7d303582-9067-4426-ad13-0d86a4bba2df"
      },
      "execution_count": 15,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "                                             Resumes\n",
              "0  Global Sales Administrator Biamp Systems Globa...\n",
              "1  Python Developer <span class=\"hl\">Python</span...\n",
              "2  IT Project Manager <span class=\"hl\">IT</span> ...\n",
              "3  UI Front End Developer UI <span class=\"hl\">Fro...\n",
              "4  IT Security Analyst <span class=\"hl\">IT</span>..."
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-898c6a0a-0e3f-44dd-9455-3da629e7ed0b\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Resumes</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>Global Sales Administrator Biamp Systems Globa...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Python Developer &lt;span class=\"hl\"&gt;Python&lt;/span...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>IT Project Manager &lt;span class=\"hl\"&gt;IT&lt;/span&gt; ...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>UI Front End Developer UI &lt;span class=\"hl\"&gt;Fro...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>IT Security Analyst &lt;span class=\"hl\"&gt;IT&lt;/span&gt;...</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-898c6a0a-0e3f-44dd-9455-3da629e7ed0b')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-898c6a0a-0e3f-44dd-9455-3da629e7ed0b button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-898c6a0a-0e3f-44dd-9455-3da629e7ed0b');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-618f113a-80fd-42c0-b5c0-ac87d14021bb\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-618f113a-80fd-42c0-b5c0-ac87d14021bb')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-618f113a-80fd-42c0-b5c0-ac87d14021bb button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "    </div>\n",
              "  </div>\n"
            ]
          },
          "metadata": {},
          "execution_count": 15
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Define the function for cleaning text\n",
        "def clean_text(text):\n",
        "    return re.sub(r\"<span class=\\\"hl\\\">(.*?)</span>\", r\"\\1\", text)\n",
        "# Apply the function to the entire column\n",
        "resumes['Resumes'] = resumes['Resumes'].apply(clean_text)"
      ],
      "metadata": {
        "id": "MrCrvWv65nAw"
      },
      "execution_count": 16,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import nltk\n",
        "nltk.download('punkt')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "aUdNZquW4yXo",
        "outputId": "39821786-1a0b-4cfa-c2cc-86622675ccee"
      },
      "execution_count": 17,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "[nltk_data] Downloading package punkt to /root/nltk_data...\n",
            "[nltk_data]   Package punkt is already up-to-date!\n"
          ]
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "True"
            ]
          },
          "metadata": {},
          "execution_count": 17
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import nltk\n",
        "nltk.download('stopwords')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "09C8uhGu51Vh",
        "outputId": "0dd144a6-228e-4522-cddf-1a613642e995"
      },
      "execution_count": 18,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
            "[nltk_data]   Package stopwords is already up-to-date!\n"
          ]
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "True"
            ]
          },
          "metadata": {},
          "execution_count": 18
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "def clean_resume(resume):\n",
        "    if isinstance(resume, str):\n",
        "        # Convert to lowercase\n",
        "        resume = resume.lower()\n",
        "\n",
        "        # Remove URLs, RT, cc, hashtags, mentions, non-ASCII characters, punctuation, and extra whitespace\n",
        "        resume = re.sub('http\\S+\\s*|RT|cc|#\\S+|@\\S+|[^\\x00-\\x7f]|[^\\w\\s]', ' ', resume)\n",
        "        resume = re.sub('\\s+', ' ', resume).strip()\n",
        "\n",
        "        return resume\n",
        "    else:\n",
        "        return ''\n",
        "\n",
        "# Applying the cleaning function to a Datasets\n",
        "resumes['Resumes']  = resumes['Resumes'].apply(lambda x: clean_resume(x))"
      ],
      "metadata": {
        "id": "TWyPQ63w51kN"
      },
      "execution_count": 19,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import pandas as pd\n",
        "from transformers import AutoTokenizer, AutoModelForMaskedLM, AdamW\n",
        "import torch\n",
        "from torch.utils.data import DataLoader, TensorDataset\n",
        "from tqdm import tqdm\n",
        "\n",
        "# Load the pre-trained model\n",
        "mpnet = \"sentence-transformers/all-mpnet-base-v2\"\n",
        "tokenizer = AutoTokenizer.from_pretrained(mpnet)\n",
        "pretrained_model = AutoModelForMaskedLM.from_pretrained(mpnet)\n",
        "\n",
        "# Assuming 'resumes' is a DataFrame with a column named 'Resumes'\n",
        "texts = resumes['Resumes'].tolist()\n",
        "\n",
        "# Tokenize and encode the unlabeled data\n",
        "encodings = tokenizer(texts, padding=True, truncation = True, return_tensors='pt')\n",
        "\n",
        "# Create a TensorDataset\n",
        "dataset = TensorDataset(encodings['input_ids'], encodings['attention_mask'])\n",
        "\n",
        "# Move the model to the appropriate device (CPU or GPU)\n",
        "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
        "pretrained_model.to(device)\n",
        "\n",
        "# Initialize the optimizer\n",
        "optimizer = AdamW(pretrained_model.parameters(), lr=1e-5)\n",
        "\n",
        "batch_size = 8\n",
        "epochs = 3\n",
        "import math\n",
        "\n",
        "# Experiment with different chunk sizes\n",
        "chunk_sizes_to_try = [200]  # Can add more sizes later\n",
        "\n",
        "for chunk_size in chunk_sizes_to_try:\n",
        "    for epoch in range(epochs):\n",
        "        tqdm_dataloader = tqdm(DataLoader(dataset, batch_size=batch_size, shuffle=True), desc=f'Epoch {epoch + 1}/{epochs}')\n",
        "\n",
        "        pretrained_model.train()\n",
        "        for batch in tqdm_dataloader:\n",
        "            input_ids, attention_mask = batch\n",
        "            input_ids, attention_mask = input_ids.to(device), attention_mask.to(device)\n",
        "\n",
        "            # Calculate number of chunks for current batch\n",
        "            sequence_length = input_ids.size(1)  # Get actual sequence length\n",
        "            num_chunks = math.ceil(sequence_length / chunk_size)\n",
        "\n",
        "            for i in range(num_chunks):\n",
        "                start_idx = i * chunk_size\n",
        "                end_idx = min((i + 1) * chunk_size, sequence_length)  # Handle final chunk\n",
        "\n",
        "                # Extract chunk data\n",
        "                input_ids_chunk = input_ids[:, start_idx:end_idx]\n",
        "                attention_mask_chunk = attention_mask[:, start_idx:end_idx]\n",
        "\n",
        "                # Forward pass\n",
        "                outputs = pretrained_model(\n",
        "                    input_ids_chunk, attention_mask=attention_mask_chunk, labels=input_ids_chunk.reshape(-1)\n",
        "                    )\n",
        "\n",
        "                # Calculate loss\n",
        "                loss = outputs.loss\n",
        "\n",
        "                # Backward pass and optimization\n",
        "                optimizer.zero_grad()\n",
        "                loss.backward()\n",
        "                optimizer.step()\n",
        "\n",
        "                # Update progress bar\n",
        "                tqdm_dataloader.set_postfix({'Loss': loss.item(), 'Chunk Size': chunk_size})"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "kypmxXhz4ybO",
        "outputId": "0b46968a-5485-4e2e-dc4d-f1c9e023090b"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "Some weights of the model checkpoint at sentence-transformers/all-mpnet-base-v2 were not used when initializing MPNetForMaskedLM: ['pooler.dense.weight', 'pooler.dense.bias']\n",
            "- This IS expected if you are initializing MPNetForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
            "- This IS NOT expected if you are initializing MPNetForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
            "Some weights of MPNetForMaskedLM were not initialized from the model checkpoint at sentence-transformers/all-mpnet-base-v2 and are newly initialized: ['lm_head.bias', 'lm_head.dense.bias', 'lm_head.layer_norm.weight', 'lm_head.decoder.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.bias']\n",
            "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
            "Epoch 1/3:   2%|▏         | 67/3202 [01:06<54:36,  1.04s/it, Loss=3.44, Chunk Size=200]"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/gdrive')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "GrFenXiepxRA",
        "outputId": "84732ce8-bd2f-40de-a7e4-573ffa880ade"
      },
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Mounted at /content/gdrive\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "pretrained_model.save_pretrained('/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_base_v2')\n",
        "tokenizer.save_pretrained('/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_base_v2')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "h2jJmGCQgnUK",
        "outputId": "5c8811d8-bb6f-46be-a5b2-1112d07b5d91"
      },
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "('/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v2/tokenizer_config.json',\n",
              " '/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v2/special_tokens_map.json',\n",
              " '/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v2/vocab.txt',\n",
              " '/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v2/added_tokens.json',\n",
              " '/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v2/tokenizer.json')"
            ]
          },
          "metadata": {},
          "execution_count": 11
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "ls"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "FxxiUXhStwLk",
        "outputId": "12b2967d-c5fa-405d-87e9-70dbf78eea55"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[0m\u001b[01;34mfine_tuned_mpnet\u001b[0m/     \u001b[01;34mfine_tuned_resumes\u001b[0m/  resumes6000.csv  the_resumesFirst.csv\n",
            "fine_tuned_mpnet.zip  \u001b[01;34mgdrive\u001b[0m/              \u001b[01;34msample_data\u001b[0m/\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "pwd"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 35
        },
        "id": "x4KmqwXJt2AK",
        "outputId": "8f359dba-ee83-41f7-da9c-755dda297926"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'/content'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 96
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "cd /content"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "na5_rkhhtIFS",
        "outputId": "039a56d3-e2ce-49dd-b1a7-450300e2bdf8"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "/content\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Save the fine-tuned model\n",
        "pretrained_model.save_pretrained('fine_tuned_mpnet_v1')\n",
        "tokenizer.save_pretrained('fine_tuned_mpnet_v1')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Yt-tBcsCvXss",
        "outputId": "b025722e-79a8-4361-930a-804a702ac232"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "('fine_tuned_mpnet_v1/tokenizer_config.json',\n",
              " 'fine_tuned_mpnet_v1/special_tokens_map.json',\n",
              " 'fine_tuned_mpnet_v1/vocab.txt',\n",
              " 'fine_tuned_mpnet_v1/added_tokens.json',\n",
              " 'fine_tuned_mpnet_v1/tokenizer.json')"
            ]
          },
          "metadata": {},
          "execution_count": 100
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "ls"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Wd7txZXhn3YX",
        "outputId": "5ea0c99a-6541-4ea9-f6c6-e6bc8daf27ed"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[0m\u001b[01;34mfine_tuned_mpnet\u001b[0m/     fine_tuned_mpnet.zip  \u001b[01;34mgdrive\u001b[0m/          \u001b[01;34msample_data\u001b[0m/\n",
            "\u001b[01;34mfine_tuned_mpnet_v1\u001b[0m/  \u001b[01;34mfine_tuned_resumes\u001b[0m/   resumes6000.csv  the_resumesFirst.csv\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "pretrained_model.save_pretrained('/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v1')\n",
        "tokenizer.save_pretrained('/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v1')\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ppk2Js4Tv7-5",
        "outputId": "8ac4a813-f674-46fb-a5d4-0323d4f8125a"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "('/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v1/tokenizer_config.json',\n",
              " '/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v1/special_tokens_map.json',\n",
              " '/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v1/vocab.txt',\n",
              " '/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v1/added_tokens.json',\n",
              " '/content/gdrive/My Drive/Finetunedmodel/fine_tuned_mpnet_v1/tokenizer.json')"
            ]
          },
          "metadata": {},
          "execution_count": 102
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from transformers import AutoTokenizer, AutoModelForMaskedLM\n",
        "\n",
        "model= 'DeroG/mpnet_new'\n",
        "tokenizer = AutoTokenizer.from_pretrained(model)\n",
        "model = AutoModelForMaskedLM.from_pretrained(model)"
      ],
      "metadata": {
        "id": "7wXwExyi6rYK"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "pip install  hnswlib"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "pKDy0s9g9gcK",
        "outputId": "5d796c7e-39cf-4465-a964-6ca4791aba4a"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting hnswlib\n",
            "  Downloading hnswlib-0.8.0.tar.gz (36 kB)\n",
            "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from hnswlib) (1.23.5)\n",
            "Building wheels for collected packages: hnswlib\n",
            "  Building wheel for hnswlib (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for hnswlib: filename=hnswlib-0.8.0-cp310-cp310-linux_x86_64.whl size=2287618 sha256=f1176656b86f12880d251e5a85b8562e1be1a45d5618ecfa55f021001c459f48\n",
            "  Stored in directory: /root/.cache/pip/wheels/af/a9/3e/3e5d59ee41664eb31a4e6de67d1846f86d16d93c45f277c4e7\n",
            "Successfully built hnswlib\n",
            "Installing collected packages: hnswlib\n",
            "Successfully installed hnswlib-0.8.0\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "pip install -U sentence-transformers"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "-inPZMW9-ask",
        "outputId": "06585972-e9fc-4b8f-80fc-ea34f49aa247"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.10/dist-packages (2.2.2)\n",
            "Requirement already satisfied: transformers<5.0.0,>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (4.35.2)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (4.66.1)\n",
            "Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (2.1.0+cu121)\n",
            "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.16.0+cu121)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.23.5)\n",
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.2.2)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.11.4)\n",
            "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (3.8.1)\n",
            "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.1.99)\n",
            "Requirement already satisfied: huggingface-hub>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.19.4)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (3.13.1)\n",
            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (2023.6.0)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (2.31.0)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (6.0.1)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (4.5.0)\n",
            "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (23.2)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (1.12)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.2.1)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.1.2)\n",
            "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (2.1.0)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers) (2023.6.3)\n",
            "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers) (0.15.0)\n",
            "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers) (0.4.1)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (8.1.7)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (1.3.2)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers) (3.2.0)\n",
            "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision->sentence-transformers) (9.4.0)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6.0->sentence-transformers) (2.1.3)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (3.6)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (2023.11.17)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6.0->sentence-transformers) (1.3.0)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import numpy as np\n",
        "import pandas as pd\n",
        "import re\n",
        "# Download the NLTK stopwords\n",
        "import nltk\n",
        "nltk.download('punkt')\n",
        "from nltk.corpus import stopwords\n",
        "import pickle\n",
        "import hnswlib\n",
        "import sentence_transformers as st\n",
        "from sentence_transformers import SentenceTransformer, util\n",
        "import time\n",
        "from tqdm import tqdm\n",
        "import numpy as np\n",
        "from math import ceil\n",
        "from torch.nn import functional as F"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "eoyL885S9kbH",
        "outputId": "d01de86b-0643-4096-dbd5-a183db05a961"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "[nltk_data] Downloading package punkt to /root/nltk_data...\n",
            "[nltk_data]   Package punkt is already up-to-date!\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "resumes = pd.read_csv(\"/content/the_resumesFirst.csv\")"
      ],
      "metadata": {
        "id": "cWM655E56wvO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "resumes.head(5)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "-EKdhiiF9Zgc",
        "outputId": "598b2c0d-e0ee-467a-9597-4e3077ad9e24"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "                                              Resume           Category\n",
              "0  CESAR CABAL Financial Analyst ccabal43emailcom...  Digital Marketing\n",
              "1  Selamawit Yemane Customer Service Manager sela...  Digital Marketing\n",
              "2  DRISTAN ARTHUR BUDGET ANALYST CONTACT darthure...  Digital Marketing\n",
              "3  BENTLI FALLA CAREER OBJECTIVE Creative and wit...  Digital Marketing\n",
              "4  First Last Advertising Copy Writer Bay Area Ca...  Digital Marketing"
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-cb778921-ea34-41bc-bfda-7d3326b53b96\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Resume</th>\n",
              "      <th>Category</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>CESAR CABAL Financial Analyst ccabal43emailcom...</td>\n",
              "      <td>Digital Marketing</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Selamawit Yemane Customer Service Manager sela...</td>\n",
              "      <td>Digital Marketing</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>DRISTAN ARTHUR BUDGET ANALYST CONTACT darthure...</td>\n",
              "      <td>Digital Marketing</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>BENTLI FALLA CAREER OBJECTIVE Creative and wit...</td>\n",
              "      <td>Digital Marketing</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>First Last Advertising Copy Writer Bay Area Ca...</td>\n",
              "      <td>Digital Marketing</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-cb778921-ea34-41bc-bfda-7d3326b53b96')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-cb778921-ea34-41bc-bfda-7d3326b53b96 button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-cb778921-ea34-41bc-bfda-7d3326b53b96');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-0947ca76-4684-4844-a59a-85dccf611be8\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-0947ca76-4684-4844-a59a-85dccf611be8')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-0947ca76-4684-4844-a59a-85dccf611be8 button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ]
          },
          "metadata": {},
          "execution_count": 175
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import nltk\n",
        "nltk.download('stopwords')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "YPjo60K-AHGv",
        "outputId": "3696fdd4-9095-4bb1-8768-06954b86dc3d"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
            "[nltk_data]   Package stopwords is already up-to-date!\n"
          ]
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "True"
            ]
          },
          "metadata": {},
          "execution_count": 176
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "Preprop_resumes = resumes[\"Resume\"]"
      ],
      "metadata": {
        "id": "0o9HS80GE26g"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Function for cleaning and preprocessing the resume\n",
        "def clean_resume(resume):\n",
        "    if isinstance(resume, str):\n",
        "        # Convert to lowercase\n",
        "        resume = resume.lower()\n",
        "\n",
        "        # Remove URLs, RT, cc, hashtags, mentions, non-ASCII characters, punctuation, and extra whitespace\n",
        "        resume = re.sub('http\\S+\\s*|RT|cc|#\\S+|@\\S+|[^\\x00-\\x7f]|[^\\w\\s]', ' ', resume)\n",
        "        resume = re.sub('\\s+', ' ', resume).strip()\n",
        "\n",
        "        # Tokenize the resume\n",
        "        tokens = nltk.word_tokenize(resume)\n",
        "\n",
        "        # Remove stopwords\n",
        "        stop_words = set(stopwords.words('english'))\n",
        "        tokens = [token for token in tokens if token.lower() not in stop_words]\n",
        "\n",
        "        # Join the tokens back into a sentence\n",
        "        preprocessed_resume = ' '.join(tokens)\n",
        "\n",
        "        return preprocessed_resume\n",
        "    else:\n",
        "        return ''\n",
        "# Applying the cleaning function to a Datasets\n",
        "Preprop_resumes = Preprop_resumes.apply(lambda x: clean_resume(x))"
      ],
      "metadata": {
        "id": "tAQj28-z-rPO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "resumes = resumes[\"Resume\"].tolist()"
      ],
      "metadata": {
        "id": "14d8JRdvFRgc"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "Preprop_resumes = Preprop_resumes.tolist()"
      ],
      "metadata": {
        "id": "UJgKODhmCeQc"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from transformers import AutoTokenizer, AutoModelForMaskedLM\n",
        "\n",
        "model= 'DeroG/mpnet_new'\n",
        "tokenizer = AutoTokenizer.from_pretrained(model)\n",
        "model = AutoModelForMaskedLM.from_pretrained(model)"
      ],
      "metadata": {
        "id": "ML9r4WqyvymZ"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from transformers import AutoTokenizer\n",
        "import torch\n",
        "from tqdm import tqdm\n",
        "\n",
        "def embed_resumes_with_progress(model, tokenizer, resumes, chunk_size=200):\n",
        "    \"\"\"\n",
        "    Embeds a list of resumes using the SentenceTransformer model with chunking and progress bar.\n",
        "\n",
        "    Args:\n",
        "        model: The SentenceTransformer model.\n",
        "        tokenizer: The Hugging Face Tokenizer for text pre-processing.\n",
        "        resumes: A list of preprocessed resumes.\n",
        "        chunk_size: Maximum number of tokens per chunk (default: 200).\n",
        "\n",
        "    Returns:\n",
        "        A numpy array containing the averaged embeddings for each resume.\n",
        "    \"\"\"\n",
        "    resume_embeddings = []\n",
        "\n",
        "    with tqdm(total=len(Preprop_resumes)) as pbar:\n",
        "        for resume in Preprop_resumes:\n",
        "            encoded_chunks = []\n",
        "            chunks = [resume[i:i+chunk_size] for i in range(0, len(resume), chunk_size)]\n",
        "            for chunk in chunks:\n",
        "                encoded_chunk = tokenizer(chunk, padding=True, truncation=True, return_tensors=\"pt\")\n",
        "                with torch.no_grad():\n",
        "                    chunk_embedding = model(**encoded_chunk)[0]\n",
        "                    attention_mask = encoded_chunk[\"attention_mask\"]\n",
        "                    encoded_chunks.append(chunk_embedding)\n",
        "\n",
        "            # Concatenate the encoded chunks\n",
        "            concatenated_chunks = torch.cat(encoded_chunks, dim=1)\n",
        "            resume_embedding = torch.mean(concatenated_chunks, dim=1)\n",
        "            resume_embeddings.append(resume_embedding)\n",
        "\n",
        "            pbar.update(1)\n",
        "\n",
        "    return torch.cat(resume_embeddings)"
      ],
      "metadata": {
        "id": "IWhRAIEGznBW"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Get resume embeddings\n",
        "import torch\n",
        "resume_embeddings = embed_resumes_with_progress(model, tokenizer, Preprop_resumes)\n",
        "\n",
        "# Access individual embedding\n",
        "first_resume_embedding = resume_embeddings[0]"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "cefhi-6uV0u0",
        "outputId": "fccef929-1f33-4c1f-a361-bf5dd9cab61c"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "100%|██████████| 9/9 [00:22<00:00,  2.51s/it]\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "resume_embeddings.shape"
      ],
      "metadata": {
        "id": "FlG8BH8nG4Ys",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "409cb351-39df-4cff-94c8-7d658c3b558c"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "torch.Size([9, 30527])"
            ]
          },
          "metadata": {},
          "execution_count": 184
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "job_description = \"\"\"\n",
        "\n",
        "Boyave\n",
        "Full-Time\n",
        "Description\n",
        "Content Creator\n",
        "Job brief\n",
        "We are looking for a Content Creator to write and publish various types of pieces for our company’s web pages, like articles, ebooks and social media posts.\n",
        "Content Creator responsibilities include producing marketing copy to advertise our products, writing blog posts about industry-related topics and promoting our content on social media. To be successful in this role, you should have experience with digital publishing and generating traffic and leads for new business. Please share samples of your work (portfolio or links to published articles) along with your application.\n",
        "Ultimately, you will help us reach our target audience by delivering both useful and appealing online information about our company and products.\n",
        "Responsibilities\n",
        "•\tResearch industry-related topics\n",
        "•\tPrepare well-structured drafts using digital publishing platforms\n",
        "•\tCreate and distribute marketing copy to advertise our company and products\n",
        "•\tInterview industry professionals and incorporate their views in blog posts\n",
        "•\tEdit and proofread written pieces before publication\n",
        "•\tConduct keyword research and use SEO guidelines to optimize content\n",
        "•\tPromote content on social networks and monitor engagement (e.g. comments and shares)\n",
        "•\tIdentify customers’ needs and recommend new topics\n",
        "•\tCoordinate with marketing and design teams to illustrate articles\n",
        "•\tMeasure web traffic to content (e.g. conversion and bounce rates)\n",
        "•\tUpdate our websites as needed\n",
        "Requirements and skills\n",
        "•\tProven work experience as a Content Creator, Copywriter or similar role\n",
        "•\tPortfolio of published articles\n",
        "•\tHands-on experience with Content Management Systems (e.g. WordPress)\n",
        "•\tExcellent writing and editing skills in English\n",
        "•\tAn ability to fact-check long-form content pieces\n",
        "•\tTime-management skills\n",
        "•\tFamiliarity with SEO\n",
        "•\tBSc in Marketing, English, Journalism or relevant field\"\"\""
      ],
      "metadata": {
        "id": "9rePs2i2rE8Y"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def clean_JD(JD):\n",
        "  \"\"\"\n",
        "  Preprocesses the provided JD by:\n",
        "    - Lowercasing all text\n",
        "    - Removing punctuation\n",
        "    - Removing stop words and punctuation and sympols\n",
        "  \"\"\"\n",
        "  JD = JD.lower()\n",
        "  JD = re.sub(r\"[^\\w\\s]\", \"\", JD)\n",
        "  stop_words = stopwords.words(\"english\")\n",
        "  filtered_words = [word for word in JD.split() if word not in stop_words]\n",
        "  cleaned_JD = \" \".join(filtered_words)\n",
        "  return  cleaned_JD"
      ],
      "metadata": {
        "id": "fV2s-58itieE"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "cleaned_job_description = clean_JD(job_description)\n",
        "print(\"Cleaned Job Description:\", cleaned_job_description)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "W5Wg84rU5V_b",
        "outputId": "caee6213-0826-4535-fa7f-e684c91c622a"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Cleaned Job Description: boyave fulltime description content creator job brief looking content creator write publish various types pieces companys web pages like articles ebooks social media posts content creator responsibilities include producing marketing copy advertise products writing blog posts industryrelated topics promoting content social media successful role experience digital publishing generating traffic leads new business please share samples work portfolio links published articles along application ultimately help us reach target audience delivering useful appealing online information company products responsibilities research industryrelated topics prepare wellstructured drafts using digital publishing platforms create distribute marketing copy advertise company products interview industry professionals incorporate views blog posts edit proofread written pieces publication conduct keyword research use seo guidelines optimize content promote content social networks monitor engagement eg comments shares identify customers needs recommend new topics coordinate marketing design teams illustrate articles measure web traffic content eg conversion bounce rates update websites needed requirements skills proven work experience content creator copywriter similar role portfolio published articles handson experience content management systems eg wordpress excellent writing editing skills english ability factcheck longform content pieces timemanagement skills familiarity seo bsc marketing english journalism relevant field\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from transformers import AutoTokenizer\n",
        "from tqdm import tqdm\n",
        "\n",
        "\n",
        "def embed_JD_with_progress(model, tokenizer, cleaned_job_description, chunk_size=200):\n",
        "  \"\"\"\n",
        "  Embeds a job description using the SentenceTransformer model with chunking and progress bar.\n",
        "\n",
        "  Args:\n",
        "    model: The SentenceTransformer model.\n",
        "    tokenizer: The Hugging Face Tokenizer for text pre-processing.\n",
        "    cleaned_job_description: A preprocessed job description string.\n",
        "    chunk_size: Maximum number of tokens per chunk (default: 200).\n",
        "\n",
        "  Returns:\n",
        "    A numpy array containing the embedding for the job description.\n",
        "  \"\"\"\n",
        "\n",
        "  encoded_chunks = []\n",
        "  chunks = [cleaned_job_description[i:i+chunk_size] for i in range(0, len(cleaned_job_description), chunk_size)]\n",
        "\n",
        "  with tqdm(total=len(chunks), desc=\"Embedding Job Description\") as pbar:\n",
        "    for chunk in chunks:\n",
        "      encoded_chunk = tokenizer(chunk, padding=True, truncation=True, return_tensors=\"pt\")\n",
        "      with torch.no_grad():\n",
        "        chunk_embedding = model(**encoded_chunk)[0]\n",
        "        attention_mask = encoded_chunk[\"attention_mask\"]\n",
        "        encoded_chunks.append(chunk_embedding)\n",
        "      pbar.update(1)\n",
        "\n",
        "  concatenated_chunks = torch.cat(encoded_chunks, dim=1)\n",
        "  JD_embeddings = torch.mean(concatenated_chunks, dim=1)\n",
        "  return JD_embeddings.cpu().numpy()\n"
      ],
      "metadata": {
        "id": "DUy5qjVk6_-l"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Get resume embeddings\n",
        "import torch\n",
        "JD_embeddings = embed_JD_with_progress(model, tokenizer, cleaned_job_description)\n",
        "\n",
        "# Access individual embedding\n",
        "first_JD_embedding = JD_embeddings[0]"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "PBdXLtj_rFDn",
        "outputId": "cb1b7d79-1fdc-4d84-c29e-fc3b7b231480"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "Embedding Job Description: 100%|██████████| 8/8 [00:01<00:00,  4.79it/s]\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "JD_embeddings.shape"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "LtcX_V638Qjh",
        "outputId": "cfc786df-4c33-42b6-f421-b45d7c014d36"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "(1, 30527)"
            ]
          },
          "metadata": {},
          "execution_count": 190
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Access individual embedding\n",
        "first_JD_embedding = JD_embeddings[0]"
      ],
      "metadata": {
        "id": "28E62owWtKE9"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "JD_embeddings"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "yoFomYiXtKG9",
        "outputId": "26c5e508-b26b-414d-c40b-e764dabdc470"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "array([[ 2.4844365,  0.6637995,  7.125794 , ..., -1.8927242, -3.2216737,\n",
              "         3.1794276]], dtype=float32)"
            ]
          },
          "metadata": {},
          "execution_count": 192
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "def similarity_percentage(similarity_score):\n",
        "    if similarity_score < 0.2:\n",
        "        return 0\n",
        "    elif 0.2 <= similarity_score < 0.3:\n",
        "        return similarity_score - 0.25\n",
        "    elif 0.3 <= similarity_score < 0.4:\n",
        "        return similarity_score - 0.23\n",
        "    elif 0.4 <= similarity_score < 0.55:\n",
        "        return similarity_score - 0.19\n",
        "    elif 0.55 <= similarity_score < 0.65:\n",
        "        return similarity_score - 0.14\n",
        "    else:\n",
        "      return similarity_score - 0.1"
      ],
      "metadata": {
        "id": "UG_zHu2iudVi"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def create_hnsw_index(embeddings, max_elements, ef_construction, M, ef):\n",
        "    \"\"\"\n",
        "    Creates and initializes an HNSWLib index with the specified parameters.\n",
        "\n",
        "    Args:\n",
        "        embeddings: A list of embedding vectors.\n",
        "        max_elements: Maximum number of elements to store in the index.\n",
        "        ef_construction: Number of elements to consider during index construction.\n",
        "        M: Maximum number of connections per node in the HNSW graph.\n",
        "        ef: Number of elements to consider during search.\n",
        "\n",
        "    Returns:\n",
        "        An HNSWLib index object.\n",
        "    \"\"\"\n",
        "    embedding_size = 30527\n",
        "    index = hnswlib.Index(space='cosine', dim=embedding_size)\n",
        "    index.init_index(max_elements, ef_construction, M)\n",
        "    index.add_items(resume_embeddings, list(range(len(resume_embeddings))))\n",
        "    index.set_ef(ef)\n",
        "    return index"
      ],
      "metadata": {
        "id": "phQs8On6udc2"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Define parameters for the index\n",
        "max_elements = len(resume_embeddings)\n",
        "ef_construction = 2000\n",
        "M = 200\n",
        "ef = 50\n",
        "index = create_hnsw_index(resume_embeddings, max_elements, ef_construction, M, ef)\n",
        "print(\"Corpus loaded with {} resumes / embeddings\".format(len(resume_embeddings)))\n",
        "\n",
        "# Retrieve resumes based on job description\n",
        "take_k_hits = int(input(\"\\nHow many top resumes do you want to be retrieved?\\n\\n\"))\n",
        "\n",
        "start_time = time.time()\n",
        "\n",
        "resume_ids, dist = index.knn_query(JD_embeddings, take_k_hits)\n",
        "\n",
        "# Calculate the similarity percentage and create a DataFrame\n",
        "hits = [{'resume_id': id, 'Original_Score': 1 - score, 'Adjusted_Score': similarity_percentage(1 - score)} for id, score in zip(resume_ids[0], dist[0])]\n",
        "hits = sorted(hits, key=lambda x: x['Adjusted_Score'], reverse=True)\n",
        "\n",
        "end_time = time.time()\n",
        "\n",
        "print(\"Results (after {:.3f} seconds):\".format(end_time - start_time))\n",
        "\n",
        "# Create a DataFrame with original and adjusted similarity scores\n",
        "Resumeranking = pd.DataFrame(hits[:take_k_hits])\n",
        "Resumeranking['Resumes'] = Resumeranking['resume_id'].map(lambda x: resumes[x])\n",
        "Resumeranking = Resumeranking.drop(['resume_id'], axis=1)\n",
        "\n",
        "# Convert Adjusted_Score to percentage format\n",
        "Resumeranking['Original_Score'] = Resumeranking['Original_Score']\n",
        "Resumeranking['Adjusted_Score'] = (Resumeranking['Adjusted_Score'] * 100).round(2)\n",
        "Resumeranking['Adjusted_Score'] = Resumeranking['Adjusted_Score'].astype(str) + '%'\n",
        "\n",
        "Resumeranking = Resumeranking[['Resumes', 'Original_Score', 'Adjusted_Score']]\n",
        "Resumeranking"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 436
        },
        "id": "AlHtoaZ_udeq",
        "outputId": "e769c65e-25f6-434f-df77-1e49efe9888b"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Corpus loaded with 9 resumes / embeddings\n",
            "\n",
            "How many top resumes do you want to be retrieved?\n",
            "\n",
            "9\n",
            "Results (after 0.001 seconds):\n"
          ]
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "                                             Resumes  Original_Score  \\\n",
              "0  First Last Advertising Copy Writer Bay Area Ca...        0.980730   \n",
              "1  BENTLI FALLA CAREER OBJECTIVE Creative and wit...        0.975105   \n",
              "2  CESAR CABAL Financial Analyst ccabal43emailcom...        0.965548   \n",
              "3  First Last Digital Marketing Manager WORK EXPE...        0.962464   \n",
              "4  CHELSEY DEGA Marketing Manager chelseydegaemai...        0.959740   \n",
              "5  Reinhardt Konig Human Resources Intern Driven ...        0.958368   \n",
              "6  DRISTAN ARTHUR BUDGET ANALYST CONTACT darthure...        0.954127   \n",
              "7  Selamawit Yemane Customer Service Manager sela...        0.953998   \n",
              "8  OBJECTIVE To impart my knowledge in Veterinary...        0.931807   \n",
              "\n",
              "  Adjusted_Score  \n",
              "0         88.07%  \n",
              "1         87.51%  \n",
              "2         86.55%  \n",
              "3         86.25%  \n",
              "4         85.97%  \n",
              "5         85.84%  \n",
              "6         85.41%  \n",
              "7          85.4%  \n",
              "8         83.18%  "
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-6b9f6639-6c3f-4f49-8160-46367492458b\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Resumes</th>\n",
              "      <th>Original_Score</th>\n",
              "      <th>Adjusted_Score</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>First Last Advertising Copy Writer Bay Area Ca...</td>\n",
              "      <td>0.980730</td>\n",
              "      <td>88.07%</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>BENTLI FALLA CAREER OBJECTIVE Creative and wit...</td>\n",
              "      <td>0.975105</td>\n",
              "      <td>87.51%</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>CESAR CABAL Financial Analyst ccabal43emailcom...</td>\n",
              "      <td>0.965548</td>\n",
              "      <td>86.55%</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>First Last Digital Marketing Manager WORK EXPE...</td>\n",
              "      <td>0.962464</td>\n",
              "      <td>86.25%</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>CHELSEY DEGA Marketing Manager chelseydegaemai...</td>\n",
              "      <td>0.959740</td>\n",
              "      <td>85.97%</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>5</th>\n",
              "      <td>Reinhardt Konig Human Resources Intern Driven ...</td>\n",
              "      <td>0.958368</td>\n",
              "      <td>85.84%</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>6</th>\n",
              "      <td>DRISTAN ARTHUR BUDGET ANALYST CONTACT darthure...</td>\n",
              "      <td>0.954127</td>\n",
              "      <td>85.41%</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7</th>\n",
              "      <td>Selamawit Yemane Customer Service Manager sela...</td>\n",
              "      <td>0.953998</td>\n",
              "      <td>85.4%</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>8</th>\n",
              "      <td>OBJECTIVE To impart my knowledge in Veterinary...</td>\n",
              "      <td>0.931807</td>\n",
              "      <td>83.18%</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6b9f6639-6c3f-4f49-8160-46367492458b')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-6b9f6639-6c3f-4f49-8160-46367492458b button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-6b9f6639-6c3f-4f49-8160-46367492458b');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-1d11a2ab-dd76-48f3-853f-51c2a2ff51d5\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-1d11a2ab-dd76-48f3-853f-51c2a2ff51d5')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-1d11a2ab-dd76-48f3-853f-51c2a2ff51d5 button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "  <div id=\"id_1918a6b0-5b55-45d7-9c14-ee29641610d9\">\n",
              "    <style>\n",
              "      .colab-df-generate {\n",
              "        background-color: #E8F0FE;\n",
              "        border: none;\n",
              "        border-radius: 50%;\n",
              "        cursor: pointer;\n",
              "        display: none;\n",
              "        fill: #1967D2;\n",
              "        height: 32px;\n",
              "        padding: 0 0 0 0;\n",
              "        width: 32px;\n",
              "      }\n",
              "\n",
              "      .colab-df-generate:hover {\n",
              "        background-color: #E2EBFA;\n",
              "        box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "        fill: #174EA6;\n",
              "      }\n",
              "\n",
              "      [theme=dark] .colab-df-generate {\n",
              "        background-color: #3B4455;\n",
              "        fill: #D2E3FC;\n",
              "      }\n",
              "\n",
              "      [theme=dark] .colab-df-generate:hover {\n",
              "        background-color: #434B5C;\n",
              "        box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "        filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "        fill: #FFFFFF;\n",
              "      }\n",
              "    </style>\n",
              "    <button class=\"colab-df-generate\" onclick=\"generateWithVariable('Resumeranking')\"\n",
              "            title=\"Generate code using this dataframe.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "       width=\"24px\">\n",
              "    <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "    <script>\n",
              "      (() => {\n",
              "      const buttonEl =\n",
              "        document.querySelector('#id_1918a6b0-5b55-45d7-9c14-ee29641610d9 button.colab-df-generate');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      buttonEl.onclick = () => {\n",
              "        google.colab.notebook.generateWithVariable('Resumeranking');\n",
              "      }\n",
              "      })();\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ]
          },
          "metadata": {},
          "execution_count": 203
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "Resumeranking['Resumes'][0]"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 174
        },
        "id": "q3iJMfuAudia",
        "outputId": "457f5aa8-b1ea-4d12-9701-5bfdf7e69585"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'First Last Advertising Copy Writer Bay Area California +1234456789 professionalemailresumewordedcom linkedincominusername Advertising Copy Writer with eight years experience working with art directors to craft meaningful content for marketing and sales campaigns for over 75 clients to meet their advertising goals Supervised up to 10 junior copywriters and interns to assist in sharpening their writing skills to create content that delights its readers Acquired the Most Impactful Omnichannel Campaign Award for creating a crossplatform campaign concept that garnered over two million YouTube views and increased the clients customer base by 47 RELEVANT WORK EXPERIENCE Resume Worded New York NY 2015 Present Advertising Copy Writer 2017 Present Ranked number one in the top quartile of 50 copywriters for productivity metrics The metrics included the number of ads completed as per the brief within the scheduled timeframe with the least rewrites Consulted with eight department leads including Art Buying Merchandising Print Production and Social Media Management regarding print and graphic techniques to be considered when crafting the content Developed a $3M display for professionalgrade telescopes that increased category revenue by 50 Advertising Copy Writer 2015 2017 Developed copy for 10 omnichannel advertising campaigns for an international client while working remotely with a creative director and art director in London Collaborated with an art director on five awardwinning print advertisements that resulted in a 35 increase in client revenue and secured two new creative projects Growthsi San Francisco CA 2013 2015 Junior Copywriter Created social media strategies and rolled out 32 social media posts for four clients monthly which resulted in increased views likes and shares Optimized dated content across three websites to make it SEOfriendly by using the correct keywords and prioritizing highquality inbound and outbound links Resume Worded Exciting Company San Francisco CA 2011 2013 Copywriting Intern Started a weekly knowledgesharing Meetup for the companys 30 copywriting interns which resulted in 50 of the cohort being permanently employed Managed social media platforms for an advertising agency using TikTok Pinterest Facebook Instagram and Twitter and successfully increased engagement by 65 Collaborated with the other creative interns to brainstorm pitch ideas for dream clients which included names logos media content etc which resulted in two successful client pitches EDUCATION Resume Worded University New York NY Bachelor of Arts Journalism and Media Studies SKILLS Technical Skills Social Media WordPress Digital Marketing Search Engine Optimization SEO Languages English Native Portuguese Fluent Arabic Conversational'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 204
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "Resumeranking['Resumes'][1]"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 261
        },
        "id": "etbBaUe3udjz",
        "outputId": "44b96e1a-4b77-4b79-f1fa-d3d8a5db3cfe"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'BENTLI FALLA CAREER OBJECTIVE Creative and witty media mind with 3 years in professional social Social Media Content media roles Looking to use my knowledgebase of platforms and Creator trends which have generated trending posts with over 2M+ views to create captivating content for a company like Blueland = bentlifallaemailcom 123 4567890 o 125 WORK EXPERIENCE Q Las Vegas NV ff LinkedIn Social Media Content Moderator Teleperformance September 2018 current Las Vegas NV EDUCATION e Navigated 5+ social media platforms posting and engaging with content to increase followers by 22 since 2019 BS Maintained strong grasp of English utilizing grammatically Communication accurate sentences to answer 100+ questions per shift University of Nevada Analyzed media inquiries and determined how to address August 2014 May 2018 customer issues within 2 hours of posting Updated knowledge of software systems including Office Achieved 55 WPM responding to chats in 45 seconds Las Vegas NV Social Media Manager Intern Blue Ocean Digital Partners May 2018 September 2018 Las Vegas NV e Developed skills in SEO content creation KPIs and trend predictions Made engagement strategies presenting to 40+ colleagues Worked with Social Media Manager to boast lead generation creating 3 funnels resulting in a 7 increase in contact form submissions Generated social media presence on TikTok in 2018 rooting the company in the app before it was trending Maintained trending knowledgebase and strong understanding of 8 social media platforms including YouTube Facebook and TikTok SKILLS Instagram Twitter Facebook Pinterest YouTube TikTok Google Analytics SEO Paid social media advertising Attention to Detail'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 199
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "Resumeranking['Resumes'][2]"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 400
        },
        "id": "LGl_LxhEudnm",
        "outputId": "353c6ac5-f8de-47ae-e798-513b960c2a93"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'CESAR CABAL Financial Analyst ccabal43emailcom 123 4567890 Atlanta GA LinkedIn EDUCATION Masters Business Administration University of Georgia 2014 2016 Atlanta GA Bachelor of Science Finance University of Georgia 2010 2014 Atlanta GA SKILLS MS Excel Original Research Budget Development Project Management Data Analysis MA CAREER OBJECTIVE Detailoriented financial analyst with 6 years in quantitative statistical analysis budgeting accounting and forecasting Leveraging strong analytical skills to support operations through robust modeling to facilitate executivelevel decisionmaking and increase company revenue Quickly adapt to new technologies and attaining CPA licensure to become an indispensable asset to Logistics Property WORK EXPERIENCE Financial Analyst King Spalding October 2018 current Atlanta GA Update daily cash position through analysis investigation and reporting on key movements and trends in the PL lines Provide financial guidance to BusinessFunctions and assist in decisionmaking contributing to a 13 growth trend by developing strategic longrange planning recommendations for management Monitor regulatory developments and industry trends to facilitate incorporation into the firms AML program Perform a comprehensive analysis of financial issues debt and in depth market share and industry report that increased market share by 19 thereby increasing revenue by $12M Managed 3 financial statements with advanced layering of discounted cash flow analysis and internal planning models linked to automation tools that decreased manual admin tasks by 48 Financial Analyst Barnum Financial Group May 2016 October 2018 Atlanta GA Designed and created weekly and monthly comprehensive spending reports abstracts and charts to present data and guide investment strategies and performed adhoc analysis and reporting Improved operational efficiency of finance systems by 11 through implementation of streamlined datamanagement procedures Coordinated with underwriters lenders and loan managers to manage portfolios for multimilliondollar accounts Monitored the fund and equity investments including inflows outflows valuations risk ratings and record maintenance Established new forecasting tracking and management reporting system to improve availability and accuracy of financial data triggering a 14 increase in accuracy Financial Analysis Intern RaceTrac January 2016 April 2016 Atlanta GA Improved reporting process time by 20 with ad hoc analyses Created financial models and contributed findings to management to support initiatives for internal customers'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 200
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "Resumeranking['Resumes'][4]"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 313
        },
        "id": "EbJ-XIMXudpM",
        "outputId": "66f0d93b-3385-471c-8f64-8bb2a3f92822"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'CHELSEY DEGA Marketing Manager chelseydegaemailcom 123 4567890 Brooklyn NY LinkedIn EDUCATION BS Marketing University of Pittsburgh September 2010 April 2014 Pittsburgh PA SKILLS HubSpot Salesforce Microsoft Excel Word PowerPoint Paid Ads Facebook Google LinkedIn retargeting AB testing audience segmentation Google Analytics SEO WORK EXPERIENCE Marketing Manager HADASSAH May 2018 current New York NY Directed the launch of a campaign for a new platform resulting in revenue of $53M in the first year Created a holistic paid acquisition strategy ultimately leading to an ROI of 41 for every dollar spent Built out a culture of robust data collection and AB testing to iteratively improve campaign performance leading to an average improvement of 64 from campaign start to end Developed partnerships with higher education institutions in the US resulting in an incremental $74M in revenue Exceeded sales targets by 32 for the full year in 2019 Identified vendors who were underperforming leading to a reduction in costs of $425000 while exceeding revenue targets Oversaw a team of 5 fulltime marketers and 4 paid contractors Marketing Manager Fora Financial August 2016 May 2018 New York NY Developed a comprehensive paid acquisition strategy across Google Facebook and industry newsletters resulting in new leads that generated $18M in 2017 Built a robust brand awareness campaign through conferences and speaking engagements leading to an increase in inbound leads of 68 year over year Led the implementation of realtime reporting on marketing spend to adjust bid strategy leading to an improvement of ROI by 22 Exceeded growth targets every quarter by 23 on average Managed a team of 4 fulltime marketing associates Marketing Analyst Insight Global August 2014 August 2016 Washington DC Created AB testing plan for Facebook ad copy leading to an improvement in ROI of 12 Built key reports in Tableau for executive team around KPIs such as marketing spend new leads revenue generates and ROI saving 9 hours of manual reporting each week'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 201
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "Resumeranking['Resumes'][8]"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 278
        },
        "id": "B6MH8RmjHEjE",
        "outputId": "cb5aebaf-76b5-45ec-f482-52f9ad507a7a"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'OBJECTIVE To impart my knowledge in Veterinary medicine and provide quality healthcare to animals My aim is to sustain animal life by administering immunization to guard them against diseases PERSONAL INFORMATION Brian Avelar 322 Dogwood Lane Tucson AZ 85712 7778844221 bavelarsampleresumenet Date of Birth May 6 1979 Place of Birth PA Citizenship American Gender Male PROFILE SUMMARY Knowledgeable in toxicology and laboratory animal medicines Great skills in interpreting animal behavior Pathology EDUCATION Doctor of Veterinary Medicine 2009 Polytechnic Institute of New York University Brooklyn BS in Biology 2006 Polytechnic Institute of New York University Brooklyn EMPLOYMENT HISTORY Pharmaceutical Veterinarian 2007 Present AstraZeneca Pharmaceuticals LP Wilmington DE Responsibilities Administered immunization to animals to protect them from diseases Studied cause of animal diseases Reviewed the list of raw materials to be used and mixed in the vaccine Tested efficacy and effectiveness of vaccines to dying animals Inspected the meat products given to animals as food Developed vaccines for animals City Veterinarian 2006 2007 Private Practice Responsibilities Prescribed medicines for animals Provided daily menu for sick animals Immunized the cattle in MAGV Farm Educated the pet owners on proper animal bathing and feeding Demonstrated to clients the administration of vaccine to their pets RESEARCH Journey to Animal Life TRAININGCERTIFICATION Certificate in Animal Pathology AWARD EnvironmentFriendly Research PROFESSIONAL MEMBERSHIP American Animal Hospital Association American Veterinary Medical Association SKILLS Great communication skills Strong familiarity with animal diseases Ability to tame uncooperative animals'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 205
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "PxzWAz19HF6j"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}