Dewa commited on
Commit
9cfd1fa
·
verified ·
1 Parent(s): a238dd8

End of training

Browse files
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ocr-v6
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ocr-v6
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0242
19
+ - Axyear: {'precision': 0.9916666666666667, 'recall': 1.0, 'f1': 0.99581589958159, 'number': 119}
20
+ - Inemployeridentificationnumber: {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147}
21
+ - Mployeename: {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128}
22
+ - Mployeraddresscity: {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142}
23
+ - Mployeraddressstate: {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140}
24
+ - Mployeraddressstreet Name: {'precision': 0.9506172839506173, 'recall': 0.9746835443037974, 'f1': 0.9625, 'number': 158}
25
+ - Mployeraddresszip: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141}
26
+ - Mployername: {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150}
27
+ - Ox16statewagestips: {'precision': 0.8192771084337349, 'recall': 0.7640449438202247, 'f1': 0.7906976744186045, 'number': 89}
28
+ - Ox17stateincometax: {'precision': 0.8470588235294118, 'recall': 0.8888888888888888, 'f1': 0.8674698795180723, 'number': 81}
29
+ - Ox1wagestipsandothercompensations: {'precision': 0.9182389937106918, 'recall': 0.8538011695906432, 'f1': 0.8848484848484848, 'number': 171}
30
+ - Ox2federalincometaxwithheld: {'precision': 0.9, 'recall': 0.9053254437869822, 'f1': 0.9026548672566372, 'number': 169}
31
+ - Ox3socialsecuritywages: {'precision': 0.8653846153846154, 'recall': 0.8598726114649682, 'f1': 0.8626198083067094, 'number': 157}
32
+ - Ox4socialsecuritytaxwithheld: {'precision': 0.916083916083916, 'recall': 0.8851351351351351, 'f1': 0.9003436426116838, 'number': 148}
33
+ - Snofemployee: {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112}
34
+ - Overall Precision: 0.9405
35
+ - Overall Recall: 0.9391
36
+ - Overall F1: 0.9398
37
+ - Overall Accuracy: 0.9947
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 3e-05
57
+ - train_batch_size: 16
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 15
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Axyear | Inemployeridentificationnumber | Mployeename | Mployeraddresscity | Mployeraddressstate | Mployeraddressstreet Name | Mployeraddresszip | Mployername | Ox16statewagestips | Ox17stateincometax | Ox1wagestipsandothercompensations | Ox2federalincometaxwithheld | Ox3socialsecuritywages | Ox4socialsecuritytaxwithheld | Snofemployee | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
69
+ | 1.0074 | 1.0 | 30 | 0.3622 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 147} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 128} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 142} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 140} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 158} | {'precision': 1.0, 'recall': 0.03546099290780142, 'f1': 0.06849315068493152, 'number': 141} | {'precision': 0.07894736842105263, 'recall': 0.04, 'f1': 0.05309734513274336, 'number': 150} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 89} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 81} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 171} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 169} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 157} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 112} | 0.1 | 0.0054 | 0.0102 | 0.8965 |
70
+ | 0.2619 | 2.0 | 60 | 0.1344 | {'precision': 0.9764705882352941, 'recall': 0.6974789915966386, 'f1': 0.8137254901960784, 'number': 119} | {'precision': 0.8734939759036144, 'recall': 0.9863945578231292, 'f1': 0.926517571884984, 'number': 147} | {'precision': 0.9098360655737705, 'recall': 0.8671875, 'f1': 0.888, 'number': 128} | {'precision': 0.9324324324324325, 'recall': 0.971830985915493, 'f1': 0.9517241379310345, 'number': 142} | {'precision': 0.9716312056737588, 'recall': 0.9785714285714285, 'f1': 0.9750889679715302, 'number': 140} | {'precision': 0.8295454545454546, 'recall': 0.9240506329113924, 'f1': 0.874251497005988, 'number': 158} | {'precision': 0.9448275862068966, 'recall': 0.9716312056737588, 'f1': 0.958041958041958, 'number': 141} | {'precision': 0.9245283018867925, 'recall': 0.98, 'f1': 0.9514563106796116, 'number': 150} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 89} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 81} | {'precision': 0.215962441314554, 'recall': 0.26900584795321636, 'f1': 0.23958333333333334, 'number': 171} | {'precision': 0.26146788990825687, 'recall': 0.33727810650887574, 'f1': 0.2945736434108527, 'number': 169} | {'precision': 0.1951219512195122, 'recall': 0.15286624203821655, 'f1': 0.1714285714285714, 'number': 157} | {'precision': 0.20689655172413793, 'recall': 0.12162162162162163, 'f1': 0.15319148936170213, 'number': 148} | {'precision': 0.9767441860465116, 'recall': 0.75, 'f1': 0.8484848484848485, 'number': 112} | 0.6811 | 0.6204 | 0.6493 | 0.9639 |
71
+ | 0.1153 | 3.0 | 90 | 0.0684 | {'precision': 0.9646017699115044, 'recall': 0.9159663865546218, 'f1': 0.9396551724137931, 'number': 119} | {'precision': 0.96, 'recall': 0.9795918367346939, 'f1': 0.9696969696969697, 'number': 147} | {'precision': 0.96875, 'recall': 0.96875, 'f1': 0.96875, 'number': 128} | {'precision': 0.9659863945578231, 'recall': 1.0, 'f1': 0.9826989619377162, 'number': 142} | {'precision': 0.9790209790209791, 'recall': 1.0, 'f1': 0.989399293286219, 'number': 140} | {'precision': 0.9325153374233128, 'recall': 0.9620253164556962, 'f1': 0.9470404984423676, 'number': 158} | {'precision': 0.9724137931034482, 'recall': 1.0, 'f1': 0.9860139860139859, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.48148148148148145, 'recall': 0.29213483146067415, 'f1': 0.36363636363636365, 'number': 89} | {'precision': 0.31451612903225806, 'recall': 0.48148148148148145, 'f1': 0.3804878048780488, 'number': 81} | {'precision': 0.6020408163265306, 'recall': 0.6900584795321637, 'f1': 0.6430517711171663, 'number': 171} | {'precision': 0.8625954198473282, 'recall': 0.6686390532544378, 'f1': 0.7533333333333332, 'number': 169} | {'precision': 0.42592592592592593, 'recall': 0.4394904458598726, 'f1': 0.43260188087774293, 'number': 157} | {'precision': 0.7466666666666667, 'recall': 0.7567567567567568, 'f1': 0.7516778523489932, 'number': 148} | {'precision': 0.9714285714285714, 'recall': 0.9107142857142857, 'f1': 0.9400921658986174, 'number': 112} | 0.8131 | 0.8182 | 0.8156 | 0.9832 |
72
+ | 0.0627 | 4.0 | 120 | 0.0390 | {'precision': 0.9658119658119658, 'recall': 0.9495798319327731, 'f1': 0.9576271186440678, 'number': 119} | {'precision': 0.9664429530201343, 'recall': 0.9795918367346939, 'f1': 0.9729729729729729, 'number': 147} | {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} | {'precision': 0.9793103448275862, 'recall': 1.0, 'f1': 0.9895470383275261, 'number': 142} | {'precision': 0.9790209790209791, 'recall': 1.0, 'f1': 0.989399293286219, 'number': 140} | {'precision': 0.9440993788819876, 'recall': 0.9620253164556962, 'f1': 0.9529780564263323, 'number': 158} | {'precision': 0.986013986013986, 'recall': 1.0, 'f1': 0.9929577464788732, 'number': 141} | {'precision': 0.9673202614379085, 'recall': 0.9866666666666667, 'f1': 0.9768976897689768, 'number': 150} | {'precision': 0.6935483870967742, 'recall': 0.48314606741573035, 'f1': 0.5695364238410596, 'number': 89} | {'precision': 0.532608695652174, 'recall': 0.6049382716049383, 'f1': 0.5664739884393064, 'number': 81} | {'precision': 0.8972602739726028, 'recall': 0.7660818713450293, 'f1': 0.8264984227129338, 'number': 171} | {'precision': 0.8918918918918919, 'recall': 0.7810650887573964, 'f1': 0.832807570977918, 'number': 169} | {'precision': 0.7604790419161677, 'recall': 0.8089171974522293, 'f1': 0.7839506172839507, 'number': 157} | {'precision': 0.8344827586206897, 'recall': 0.8175675675675675, 'f1': 0.825938566552901, 'number': 148} | {'precision': 0.9646017699115044, 'recall': 0.9732142857142857, 'f1': 0.9688888888888889, 'number': 112} | 0.9035 | 0.8850 | 0.8941 | 0.9909 |
73
+ | 0.0386 | 5.0 | 150 | 0.0328 | {'precision': 0.9669421487603306, 'recall': 0.9831932773109243, 'f1': 0.975, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9761904761904762, 'recall': 0.9609375, 'f1': 0.968503937007874, 'number': 128} | {'precision': 0.9726027397260274, 'recall': 1.0, 'f1': 0.9861111111111112, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9386503067484663, 'recall': 0.9683544303797469, 'f1': 0.9532710280373832, 'number': 158} | {'precision': 0.9929577464788732, 'recall': 1.0, 'f1': 0.9964664310954063, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.7733333333333333, 'recall': 0.651685393258427, 'f1': 0.7073170731707319, 'number': 89} | {'precision': 0.6739130434782609, 'recall': 0.7654320987654321, 'f1': 0.7167630057803468, 'number': 81} | {'precision': 0.8375, 'recall': 0.783625730994152, 'f1': 0.8096676737160121, 'number': 171} | {'precision': 0.9240506329113924, 'recall': 0.863905325443787, 'f1': 0.8929663608562691, 'number': 169} | {'precision': 0.8125, 'recall': 0.8280254777070064, 'f1': 0.8201892744479495, 'number': 157} | {'precision': 0.8888888888888888, 'recall': 0.8648648648648649, 'f1': 0.8767123287671232, 'number': 148} | {'precision': 0.956140350877193, 'recall': 0.9732142857142857, 'f1': 0.9646017699115044, 'number': 112} | 0.9156 | 0.9147 | 0.9152 | 0.9930 |
74
+ | 0.027 | 6.0 | 180 | 0.0275 | {'precision': 0.9752066115702479, 'recall': 0.9915966386554622, 'f1': 0.9833333333333334, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} | {'precision': 0.993006993006993, 'recall': 1.0, 'f1': 0.9964912280701755, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9390243902439024, 'recall': 0.9746835443037974, 'f1': 0.9565217391304348, 'number': 158} | {'precision': 0.986013986013986, 'recall': 1.0, 'f1': 0.9929577464788732, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.8701298701298701, 'recall': 0.7528089887640449, 'f1': 0.8072289156626504, 'number': 89} | {'precision': 0.8888888888888888, 'recall': 0.8888888888888888, 'f1': 0.8888888888888888, 'number': 81} | {'precision': 0.9056603773584906, 'recall': 0.8421052631578947, 'f1': 0.8727272727272727, 'number': 171} | {'precision': 0.9041916167664671, 'recall': 0.893491124260355, 'f1': 0.8988095238095238, 'number': 169} | {'precision': 0.8758169934640523, 'recall': 0.8535031847133758, 'f1': 0.864516129032258, 'number': 157} | {'precision': 0.9154929577464789, 'recall': 0.8783783783783784, 'f1': 0.896551724137931, 'number': 148} | {'precision': 0.9821428571428571, 'recall': 0.9821428571428571, 'f1': 0.9821428571428571, 'number': 112} | 0.9426 | 0.9362 | 0.9394 | 0.9944 |
75
+ | 0.0214 | 7.0 | 210 | 0.0257 | {'precision': 0.9754098360655737, 'recall': 1.0, 'f1': 0.9875518672199171, 'number': 119} | {'precision': 0.9664429530201343, 'recall': 0.9795918367346939, 'f1': 0.9729729729729729, 'number': 147} | {'precision': 0.984, 'recall': 0.9609375, 'f1': 0.9723320158102766, 'number': 128} | {'precision': 0.993006993006993, 'recall': 1.0, 'f1': 0.9964912280701755, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9390243902439024, 'recall': 0.9746835443037974, 'f1': 0.9565217391304348, 'number': 158} | {'precision': 0.986013986013986, 'recall': 1.0, 'f1': 0.9929577464788732, 'number': 141} | {'precision': 0.9673202614379085, 'recall': 0.9866666666666667, 'f1': 0.9768976897689768, 'number': 150} | {'precision': 0.8481012658227848, 'recall': 0.7528089887640449, 'f1': 0.7976190476190476, 'number': 89} | {'precision': 0.8488372093023255, 'recall': 0.9012345679012346, 'f1': 0.874251497005988, 'number': 81} | {'precision': 0.8963414634146342, 'recall': 0.8596491228070176, 'f1': 0.8776119402985074, 'number': 171} | {'precision': 0.9101796407185628, 'recall': 0.8994082840236687, 'f1': 0.9047619047619048, 'number': 169} | {'precision': 0.9121621621621622, 'recall': 0.8598726114649682, 'f1': 0.8852459016393441, 'number': 157} | {'precision': 0.8904109589041096, 'recall': 0.8783783783783784, 'f1': 0.8843537414965986, 'number': 148} | {'precision': 0.9649122807017544, 'recall': 0.9821428571428571, 'f1': 0.9734513274336283, 'number': 112} | 0.9404 | 0.9381 | 0.9393 | 0.9945 |
76
+ | 0.0185 | 8.0 | 240 | 0.0279 | {'precision': 0.9596774193548387, 'recall': 1.0, 'f1': 0.9794238683127572, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.984, 'recall': 0.9609375, 'f1': 0.9723320158102766, 'number': 128} | {'precision': 0.9793103448275862, 'recall': 1.0, 'f1': 0.9895470383275261, 'number': 142} | {'precision': 0.9655172413793104, 'recall': 1.0, 'f1': 0.9824561403508771, 'number': 140} | {'precision': 0.9281437125748503, 'recall': 0.9810126582278481, 'f1': 0.9538461538461538, 'number': 158} | {'precision': 0.9929577464788732, 'recall': 1.0, 'f1': 0.9964664310954063, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.7674418604651163, 'recall': 0.7415730337078652, 'f1': 0.7542857142857143, 'number': 89} | {'precision': 0.7659574468085106, 'recall': 0.8888888888888888, 'f1': 0.8228571428571428, 'number': 81} | {'precision': 0.8944099378881988, 'recall': 0.8421052631578947, 'f1': 0.8674698795180723, 'number': 171} | {'precision': 0.9053254437869822, 'recall': 0.9053254437869822, 'f1': 0.9053254437869822, 'number': 169} | {'precision': 0.864516129032258, 'recall': 0.8535031847133758, 'f1': 0.858974358974359, 'number': 157} | {'precision': 0.9166666666666666, 'recall': 0.8918918918918919, 'f1': 0.9041095890410958, 'number': 148} | {'precision': 0.9646017699115044, 'recall': 0.9732142857142857, 'f1': 0.9688888888888889, 'number': 112} | 0.9272 | 0.9376 | 0.9324 | 0.9935 |
77
+ | 0.016 | 9.0 | 270 | 0.0255 | {'precision': 0.967479674796748, 'recall': 1.0, 'f1': 0.9834710743801653, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.984, 'recall': 0.9609375, 'f1': 0.9723320158102766, 'number': 128} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9506172839506173, 'recall': 0.9746835443037974, 'f1': 0.9625, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.8170731707317073, 'recall': 0.7528089887640449, 'f1': 0.783625730994152, 'number': 89} | {'precision': 0.8372093023255814, 'recall': 0.8888888888888888, 'f1': 0.8622754491017963, 'number': 81} | {'precision': 0.9125, 'recall': 0.8538011695906432, 'f1': 0.8821752265861027, 'number': 171} | {'precision': 0.9047619047619048, 'recall': 0.8994082840236687, 'f1': 0.9020771513353116, 'number': 169} | {'precision': 0.8782051282051282, 'recall': 0.8726114649681529, 'f1': 0.8753993610223643, 'number': 157} | {'precision': 0.8791946308724832, 'recall': 0.8851351351351351, 'f1': 0.8821548821548821, 'number': 148} | {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112} | 0.9377 | 0.9391 | 0.9384 | 0.9944 |
78
+ | 0.0143 | 10.0 | 300 | 0.0250 | {'precision': 0.9916666666666667, 'recall': 1.0, 'f1': 0.99581589958159, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9390243902439024, 'recall': 0.9746835443037974, 'f1': 0.9565217391304348, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.8170731707317073, 'recall': 0.7528089887640449, 'f1': 0.783625730994152, 'number': 89} | {'precision': 0.8888888888888888, 'recall': 0.8888888888888888, 'f1': 0.8888888888888888, 'number': 81} | {'precision': 0.9, 'recall': 0.8421052631578947, 'f1': 0.8700906344410877, 'number': 171} | {'precision': 0.9101796407185628, 'recall': 0.8994082840236687, 'f1': 0.9047619047619048, 'number': 169} | {'precision': 0.8831168831168831, 'recall': 0.8662420382165605, 'f1': 0.8745980707395498, 'number': 157} | {'precision': 0.9097222222222222, 'recall': 0.8851351351351351, 'f1': 0.8972602739726027, 'number': 148} | {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112} | 0.9422 | 0.9376 | 0.9399 | 0.9946 |
79
+ | 0.0132 | 11.0 | 330 | 0.0278 | {'precision': 0.9754098360655737, 'recall': 1.0, 'f1': 0.9875518672199171, 'number': 119} | {'precision': 0.9664429530201343, 'recall': 0.9795918367346939, 'f1': 0.9729729729729729, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9565217391304348, 'recall': 0.9746835443037974, 'f1': 0.9655172413793103, 'number': 158} | {'precision': 0.9929577464788732, 'recall': 1.0, 'f1': 0.9964664310954063, 'number': 141} | {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150} | {'precision': 0.723404255319149, 'recall': 0.7640449438202247, 'f1': 0.7431693989071038, 'number': 89} | {'precision': 0.7604166666666666, 'recall': 0.9012345679012346, 'f1': 0.824858757062147, 'number': 81} | {'precision': 0.8895705521472392, 'recall': 0.847953216374269, 'f1': 0.8682634730538922, 'number': 171} | {'precision': 0.9, 'recall': 0.9053254437869822, 'f1': 0.9026548672566372, 'number': 169} | {'precision': 0.9060402684563759, 'recall': 0.8598726114649682, 'f1': 0.8823529411764707, 'number': 157} | {'precision': 0.8979591836734694, 'recall': 0.8918918918918919, 'f1': 0.8949152542372881, 'number': 148} | {'precision': 0.9316239316239316, 'recall': 0.9732142857142857, 'f1': 0.9519650655021833, 'number': 112} | 0.9273 | 0.9386 | 0.9329 | 0.9936 |
80
+ | 0.0122 | 12.0 | 360 | 0.0238 | {'precision': 0.9916666666666667, 'recall': 1.0, 'f1': 0.99581589958159, 'number': 119} | {'precision': 0.9666666666666667, 'recall': 0.9863945578231292, 'f1': 0.9764309764309764, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9506172839506173, 'recall': 0.9746835443037974, 'f1': 0.9625, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150} | {'precision': 0.8395061728395061, 'recall': 0.7640449438202247, 'f1': 0.8, 'number': 89} | {'precision': 0.9012345679012346, 'recall': 0.9012345679012346, 'f1': 0.9012345679012346, 'number': 81} | {'precision': 0.9245283018867925, 'recall': 0.8596491228070176, 'f1': 0.8909090909090909, 'number': 171} | {'precision': 0.9, 'recall': 0.9053254437869822, 'f1': 0.9026548672566372, 'number': 169} | {'precision': 0.8903225806451613, 'recall': 0.8789808917197452, 'f1': 0.8846153846153846, 'number': 157} | {'precision': 0.916083916083916, 'recall': 0.8851351351351351, 'f1': 0.9003436426116838, 'number': 148} | {'precision': 0.9478260869565217, 'recall': 0.9732142857142857, 'f1': 0.960352422907489, 'number': 112} | 0.9447 | 0.9410 | 0.9429 | 0.9950 |
81
+ | 0.0119 | 13.0 | 390 | 0.0234 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9447852760736196, 'recall': 0.9746835443037974, 'f1': 0.9595015576323987, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150} | {'precision': 0.8095238095238095, 'recall': 0.7640449438202247, 'f1': 0.7861271676300579, 'number': 89} | {'precision': 0.9125, 'recall': 0.9012345679012346, 'f1': 0.9068322981366459, 'number': 81} | {'precision': 0.9245283018867925, 'recall': 0.8596491228070176, 'f1': 0.8909090909090909, 'number': 171} | {'precision': 0.9107142857142857, 'recall': 0.9053254437869822, 'f1': 0.9080118694362018, 'number': 169} | {'precision': 0.8709677419354839, 'recall': 0.8598726114649682, 'f1': 0.8653846153846154, 'number': 157} | {'precision': 0.9290780141843972, 'recall': 0.8851351351351351, 'f1': 0.9065743944636678, 'number': 148} | {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112} | 0.9456 | 0.9401 | 0.9428 | 0.9950 |
82
+ | 0.0112 | 14.0 | 420 | 0.0235 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9506172839506173, 'recall': 0.9746835443037974, 'f1': 0.9625, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150} | {'precision': 0.8292682926829268, 'recall': 0.7640449438202247, 'f1': 0.7953216374269005, 'number': 89} | {'precision': 0.8674698795180723, 'recall': 0.8888888888888888, 'f1': 0.8780487804878048, 'number': 81} | {'precision': 0.9182389937106918, 'recall': 0.8538011695906432, 'f1': 0.8848484848484848, 'number': 171} | {'precision': 0.9058823529411765, 'recall': 0.9112426035502958, 'f1': 0.9085545722713865, 'number': 169} | {'precision': 0.8653846153846154, 'recall': 0.8598726114649682, 'f1': 0.8626198083067094, 'number': 157} | {'precision': 0.9225352112676056, 'recall': 0.8851351351351351, 'f1': 0.903448275862069, 'number': 148} | {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112} | 0.9432 | 0.9396 | 0.9414 | 0.9949 |
83
+ | 0.0115 | 15.0 | 450 | 0.0242 | {'precision': 0.9916666666666667, 'recall': 1.0, 'f1': 0.99581589958159, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9506172839506173, 'recall': 0.9746835443037974, 'f1': 0.9625, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150} | {'precision': 0.8192771084337349, 'recall': 0.7640449438202247, 'f1': 0.7906976744186045, 'number': 89} | {'precision': 0.8470588235294118, 'recall': 0.8888888888888888, 'f1': 0.8674698795180723, 'number': 81} | {'precision': 0.9182389937106918, 'recall': 0.8538011695906432, 'f1': 0.8848484848484848, 'number': 171} | {'precision': 0.9, 'recall': 0.9053254437869822, 'f1': 0.9026548672566372, 'number': 169} | {'precision': 0.8653846153846154, 'recall': 0.8598726114649682, 'f1': 0.8626198083067094, 'number': 157} | {'precision': 0.916083916083916, 'recall': 0.8851351351351351, 'f1': 0.9003436426116838, 'number': 148} | {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112} | 0.9405 | 0.9391 | 0.9398 | 0.9947 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.44.0
89
+ - Pytorch 2.4.0
90
+ - Datasets 2.21.0
91
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1725975648.4403111a1764.36.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e8d82a08b81540b63eb576d9ee3616521483369f9339a37a330da678e3ea9f3f
3
- size 15851
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e1efb1a0728b9ab65a9cf33fb7f0b653405153fbab6e805c2f9bd3a14367b59
3
+ size 16920
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2093248701fa3b413ebdf0ab39839527eb71e84fcbfbaa8ea782f6f8767a5f60
3
  size 450585896
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:660d835d6f8f3b671105a16edc94c5a5dd9a607998bf2c44d511c562a770b449
3
  size 450585896
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff