End of training
Browse files- README.md +91 -0
- logs/events.out.tfevents.1725975648.4403111a1764.36.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +13 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: ocr-v6
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# ocr-v6
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0242
|
19 |
+
- Axyear: {'precision': 0.9916666666666667, 'recall': 1.0, 'f1': 0.99581589958159, 'number': 119}
|
20 |
+
- Inemployeridentificationnumber: {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147}
|
21 |
+
- Mployeename: {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128}
|
22 |
+
- Mployeraddresscity: {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142}
|
23 |
+
- Mployeraddressstate: {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140}
|
24 |
+
- Mployeraddressstreet Name: {'precision': 0.9506172839506173, 'recall': 0.9746835443037974, 'f1': 0.9625, 'number': 158}
|
25 |
+
- Mployeraddresszip: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141}
|
26 |
+
- Mployername: {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150}
|
27 |
+
- Ox16statewagestips: {'precision': 0.8192771084337349, 'recall': 0.7640449438202247, 'f1': 0.7906976744186045, 'number': 89}
|
28 |
+
- Ox17stateincometax: {'precision': 0.8470588235294118, 'recall': 0.8888888888888888, 'f1': 0.8674698795180723, 'number': 81}
|
29 |
+
- Ox1wagestipsandothercompensations: {'precision': 0.9182389937106918, 'recall': 0.8538011695906432, 'f1': 0.8848484848484848, 'number': 171}
|
30 |
+
- Ox2federalincometaxwithheld: {'precision': 0.9, 'recall': 0.9053254437869822, 'f1': 0.9026548672566372, 'number': 169}
|
31 |
+
- Ox3socialsecuritywages: {'precision': 0.8653846153846154, 'recall': 0.8598726114649682, 'f1': 0.8626198083067094, 'number': 157}
|
32 |
+
- Ox4socialsecuritytaxwithheld: {'precision': 0.916083916083916, 'recall': 0.8851351351351351, 'f1': 0.9003436426116838, 'number': 148}
|
33 |
+
- Snofemployee: {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112}
|
34 |
+
- Overall Precision: 0.9405
|
35 |
+
- Overall Recall: 0.9391
|
36 |
+
- Overall F1: 0.9398
|
37 |
+
- Overall Accuracy: 0.9947
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 3e-05
|
57 |
+
- train_batch_size: 16
|
58 |
+
- eval_batch_size: 8
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- num_epochs: 15
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Axyear | Inemployeridentificationnumber | Mployeename | Mployeraddresscity | Mployeraddressstate | Mployeraddressstreet Name | Mployeraddresszip | Mployername | Ox16statewagestips | Ox17stateincometax | Ox1wagestipsandothercompensations | Ox2federalincometaxwithheld | Ox3socialsecuritywages | Ox4socialsecuritytaxwithheld | Snofemployee | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
69 |
+
| 1.0074 | 1.0 | 30 | 0.3622 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 147} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 128} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 142} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 140} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 158} | {'precision': 1.0, 'recall': 0.03546099290780142, 'f1': 0.06849315068493152, 'number': 141} | {'precision': 0.07894736842105263, 'recall': 0.04, 'f1': 0.05309734513274336, 'number': 150} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 89} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 81} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 171} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 169} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 157} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 112} | 0.1 | 0.0054 | 0.0102 | 0.8965 |
|
70 |
+
| 0.2619 | 2.0 | 60 | 0.1344 | {'precision': 0.9764705882352941, 'recall': 0.6974789915966386, 'f1': 0.8137254901960784, 'number': 119} | {'precision': 0.8734939759036144, 'recall': 0.9863945578231292, 'f1': 0.926517571884984, 'number': 147} | {'precision': 0.9098360655737705, 'recall': 0.8671875, 'f1': 0.888, 'number': 128} | {'precision': 0.9324324324324325, 'recall': 0.971830985915493, 'f1': 0.9517241379310345, 'number': 142} | {'precision': 0.9716312056737588, 'recall': 0.9785714285714285, 'f1': 0.9750889679715302, 'number': 140} | {'precision': 0.8295454545454546, 'recall': 0.9240506329113924, 'f1': 0.874251497005988, 'number': 158} | {'precision': 0.9448275862068966, 'recall': 0.9716312056737588, 'f1': 0.958041958041958, 'number': 141} | {'precision': 0.9245283018867925, 'recall': 0.98, 'f1': 0.9514563106796116, 'number': 150} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 89} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 81} | {'precision': 0.215962441314554, 'recall': 0.26900584795321636, 'f1': 0.23958333333333334, 'number': 171} | {'precision': 0.26146788990825687, 'recall': 0.33727810650887574, 'f1': 0.2945736434108527, 'number': 169} | {'precision': 0.1951219512195122, 'recall': 0.15286624203821655, 'f1': 0.1714285714285714, 'number': 157} | {'precision': 0.20689655172413793, 'recall': 0.12162162162162163, 'f1': 0.15319148936170213, 'number': 148} | {'precision': 0.9767441860465116, 'recall': 0.75, 'f1': 0.8484848484848485, 'number': 112} | 0.6811 | 0.6204 | 0.6493 | 0.9639 |
|
71 |
+
| 0.1153 | 3.0 | 90 | 0.0684 | {'precision': 0.9646017699115044, 'recall': 0.9159663865546218, 'f1': 0.9396551724137931, 'number': 119} | {'precision': 0.96, 'recall': 0.9795918367346939, 'f1': 0.9696969696969697, 'number': 147} | {'precision': 0.96875, 'recall': 0.96875, 'f1': 0.96875, 'number': 128} | {'precision': 0.9659863945578231, 'recall': 1.0, 'f1': 0.9826989619377162, 'number': 142} | {'precision': 0.9790209790209791, 'recall': 1.0, 'f1': 0.989399293286219, 'number': 140} | {'precision': 0.9325153374233128, 'recall': 0.9620253164556962, 'f1': 0.9470404984423676, 'number': 158} | {'precision': 0.9724137931034482, 'recall': 1.0, 'f1': 0.9860139860139859, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.48148148148148145, 'recall': 0.29213483146067415, 'f1': 0.36363636363636365, 'number': 89} | {'precision': 0.31451612903225806, 'recall': 0.48148148148148145, 'f1': 0.3804878048780488, 'number': 81} | {'precision': 0.6020408163265306, 'recall': 0.6900584795321637, 'f1': 0.6430517711171663, 'number': 171} | {'precision': 0.8625954198473282, 'recall': 0.6686390532544378, 'f1': 0.7533333333333332, 'number': 169} | {'precision': 0.42592592592592593, 'recall': 0.4394904458598726, 'f1': 0.43260188087774293, 'number': 157} | {'precision': 0.7466666666666667, 'recall': 0.7567567567567568, 'f1': 0.7516778523489932, 'number': 148} | {'precision': 0.9714285714285714, 'recall': 0.9107142857142857, 'f1': 0.9400921658986174, 'number': 112} | 0.8131 | 0.8182 | 0.8156 | 0.9832 |
|
72 |
+
| 0.0627 | 4.0 | 120 | 0.0390 | {'precision': 0.9658119658119658, 'recall': 0.9495798319327731, 'f1': 0.9576271186440678, 'number': 119} | {'precision': 0.9664429530201343, 'recall': 0.9795918367346939, 'f1': 0.9729729729729729, 'number': 147} | {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} | {'precision': 0.9793103448275862, 'recall': 1.0, 'f1': 0.9895470383275261, 'number': 142} | {'precision': 0.9790209790209791, 'recall': 1.0, 'f1': 0.989399293286219, 'number': 140} | {'precision': 0.9440993788819876, 'recall': 0.9620253164556962, 'f1': 0.9529780564263323, 'number': 158} | {'precision': 0.986013986013986, 'recall': 1.0, 'f1': 0.9929577464788732, 'number': 141} | {'precision': 0.9673202614379085, 'recall': 0.9866666666666667, 'f1': 0.9768976897689768, 'number': 150} | {'precision': 0.6935483870967742, 'recall': 0.48314606741573035, 'f1': 0.5695364238410596, 'number': 89} | {'precision': 0.532608695652174, 'recall': 0.6049382716049383, 'f1': 0.5664739884393064, 'number': 81} | {'precision': 0.8972602739726028, 'recall': 0.7660818713450293, 'f1': 0.8264984227129338, 'number': 171} | {'precision': 0.8918918918918919, 'recall': 0.7810650887573964, 'f1': 0.832807570977918, 'number': 169} | {'precision': 0.7604790419161677, 'recall': 0.8089171974522293, 'f1': 0.7839506172839507, 'number': 157} | {'precision': 0.8344827586206897, 'recall': 0.8175675675675675, 'f1': 0.825938566552901, 'number': 148} | {'precision': 0.9646017699115044, 'recall': 0.9732142857142857, 'f1': 0.9688888888888889, 'number': 112} | 0.9035 | 0.8850 | 0.8941 | 0.9909 |
|
73 |
+
| 0.0386 | 5.0 | 150 | 0.0328 | {'precision': 0.9669421487603306, 'recall': 0.9831932773109243, 'f1': 0.975, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9761904761904762, 'recall': 0.9609375, 'f1': 0.968503937007874, 'number': 128} | {'precision': 0.9726027397260274, 'recall': 1.0, 'f1': 0.9861111111111112, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9386503067484663, 'recall': 0.9683544303797469, 'f1': 0.9532710280373832, 'number': 158} | {'precision': 0.9929577464788732, 'recall': 1.0, 'f1': 0.9964664310954063, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.7733333333333333, 'recall': 0.651685393258427, 'f1': 0.7073170731707319, 'number': 89} | {'precision': 0.6739130434782609, 'recall': 0.7654320987654321, 'f1': 0.7167630057803468, 'number': 81} | {'precision': 0.8375, 'recall': 0.783625730994152, 'f1': 0.8096676737160121, 'number': 171} | {'precision': 0.9240506329113924, 'recall': 0.863905325443787, 'f1': 0.8929663608562691, 'number': 169} | {'precision': 0.8125, 'recall': 0.8280254777070064, 'f1': 0.8201892744479495, 'number': 157} | {'precision': 0.8888888888888888, 'recall': 0.8648648648648649, 'f1': 0.8767123287671232, 'number': 148} | {'precision': 0.956140350877193, 'recall': 0.9732142857142857, 'f1': 0.9646017699115044, 'number': 112} | 0.9156 | 0.9147 | 0.9152 | 0.9930 |
|
74 |
+
| 0.027 | 6.0 | 180 | 0.0275 | {'precision': 0.9752066115702479, 'recall': 0.9915966386554622, 'f1': 0.9833333333333334, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} | {'precision': 0.993006993006993, 'recall': 1.0, 'f1': 0.9964912280701755, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9390243902439024, 'recall': 0.9746835443037974, 'f1': 0.9565217391304348, 'number': 158} | {'precision': 0.986013986013986, 'recall': 1.0, 'f1': 0.9929577464788732, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.8701298701298701, 'recall': 0.7528089887640449, 'f1': 0.8072289156626504, 'number': 89} | {'precision': 0.8888888888888888, 'recall': 0.8888888888888888, 'f1': 0.8888888888888888, 'number': 81} | {'precision': 0.9056603773584906, 'recall': 0.8421052631578947, 'f1': 0.8727272727272727, 'number': 171} | {'precision': 0.9041916167664671, 'recall': 0.893491124260355, 'f1': 0.8988095238095238, 'number': 169} | {'precision': 0.8758169934640523, 'recall': 0.8535031847133758, 'f1': 0.864516129032258, 'number': 157} | {'precision': 0.9154929577464789, 'recall': 0.8783783783783784, 'f1': 0.896551724137931, 'number': 148} | {'precision': 0.9821428571428571, 'recall': 0.9821428571428571, 'f1': 0.9821428571428571, 'number': 112} | 0.9426 | 0.9362 | 0.9394 | 0.9944 |
|
75 |
+
| 0.0214 | 7.0 | 210 | 0.0257 | {'precision': 0.9754098360655737, 'recall': 1.0, 'f1': 0.9875518672199171, 'number': 119} | {'precision': 0.9664429530201343, 'recall': 0.9795918367346939, 'f1': 0.9729729729729729, 'number': 147} | {'precision': 0.984, 'recall': 0.9609375, 'f1': 0.9723320158102766, 'number': 128} | {'precision': 0.993006993006993, 'recall': 1.0, 'f1': 0.9964912280701755, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9390243902439024, 'recall': 0.9746835443037974, 'f1': 0.9565217391304348, 'number': 158} | {'precision': 0.986013986013986, 'recall': 1.0, 'f1': 0.9929577464788732, 'number': 141} | {'precision': 0.9673202614379085, 'recall': 0.9866666666666667, 'f1': 0.9768976897689768, 'number': 150} | {'precision': 0.8481012658227848, 'recall': 0.7528089887640449, 'f1': 0.7976190476190476, 'number': 89} | {'precision': 0.8488372093023255, 'recall': 0.9012345679012346, 'f1': 0.874251497005988, 'number': 81} | {'precision': 0.8963414634146342, 'recall': 0.8596491228070176, 'f1': 0.8776119402985074, 'number': 171} | {'precision': 0.9101796407185628, 'recall': 0.8994082840236687, 'f1': 0.9047619047619048, 'number': 169} | {'precision': 0.9121621621621622, 'recall': 0.8598726114649682, 'f1': 0.8852459016393441, 'number': 157} | {'precision': 0.8904109589041096, 'recall': 0.8783783783783784, 'f1': 0.8843537414965986, 'number': 148} | {'precision': 0.9649122807017544, 'recall': 0.9821428571428571, 'f1': 0.9734513274336283, 'number': 112} | 0.9404 | 0.9381 | 0.9393 | 0.9945 |
|
76 |
+
| 0.0185 | 8.0 | 240 | 0.0279 | {'precision': 0.9596774193548387, 'recall': 1.0, 'f1': 0.9794238683127572, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.984, 'recall': 0.9609375, 'f1': 0.9723320158102766, 'number': 128} | {'precision': 0.9793103448275862, 'recall': 1.0, 'f1': 0.9895470383275261, 'number': 142} | {'precision': 0.9655172413793104, 'recall': 1.0, 'f1': 0.9824561403508771, 'number': 140} | {'precision': 0.9281437125748503, 'recall': 0.9810126582278481, 'f1': 0.9538461538461538, 'number': 158} | {'precision': 0.9929577464788732, 'recall': 1.0, 'f1': 0.9964664310954063, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.7674418604651163, 'recall': 0.7415730337078652, 'f1': 0.7542857142857143, 'number': 89} | {'precision': 0.7659574468085106, 'recall': 0.8888888888888888, 'f1': 0.8228571428571428, 'number': 81} | {'precision': 0.8944099378881988, 'recall': 0.8421052631578947, 'f1': 0.8674698795180723, 'number': 171} | {'precision': 0.9053254437869822, 'recall': 0.9053254437869822, 'f1': 0.9053254437869822, 'number': 169} | {'precision': 0.864516129032258, 'recall': 0.8535031847133758, 'f1': 0.858974358974359, 'number': 157} | {'precision': 0.9166666666666666, 'recall': 0.8918918918918919, 'f1': 0.9041095890410958, 'number': 148} | {'precision': 0.9646017699115044, 'recall': 0.9732142857142857, 'f1': 0.9688888888888889, 'number': 112} | 0.9272 | 0.9376 | 0.9324 | 0.9935 |
|
77 |
+
| 0.016 | 9.0 | 270 | 0.0255 | {'precision': 0.967479674796748, 'recall': 1.0, 'f1': 0.9834710743801653, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.984, 'recall': 0.9609375, 'f1': 0.9723320158102766, 'number': 128} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9506172839506173, 'recall': 0.9746835443037974, 'f1': 0.9625, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.8170731707317073, 'recall': 0.7528089887640449, 'f1': 0.783625730994152, 'number': 89} | {'precision': 0.8372093023255814, 'recall': 0.8888888888888888, 'f1': 0.8622754491017963, 'number': 81} | {'precision': 0.9125, 'recall': 0.8538011695906432, 'f1': 0.8821752265861027, 'number': 171} | {'precision': 0.9047619047619048, 'recall': 0.8994082840236687, 'f1': 0.9020771513353116, 'number': 169} | {'precision': 0.8782051282051282, 'recall': 0.8726114649681529, 'f1': 0.8753993610223643, 'number': 157} | {'precision': 0.8791946308724832, 'recall': 0.8851351351351351, 'f1': 0.8821548821548821, 'number': 148} | {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112} | 0.9377 | 0.9391 | 0.9384 | 0.9944 |
|
78 |
+
| 0.0143 | 10.0 | 300 | 0.0250 | {'precision': 0.9916666666666667, 'recall': 1.0, 'f1': 0.99581589958159, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9390243902439024, 'recall': 0.9746835443037974, 'f1': 0.9565217391304348, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.961038961038961, 'recall': 0.9866666666666667, 'f1': 0.9736842105263157, 'number': 150} | {'precision': 0.8170731707317073, 'recall': 0.7528089887640449, 'f1': 0.783625730994152, 'number': 89} | {'precision': 0.8888888888888888, 'recall': 0.8888888888888888, 'f1': 0.8888888888888888, 'number': 81} | {'precision': 0.9, 'recall': 0.8421052631578947, 'f1': 0.8700906344410877, 'number': 171} | {'precision': 0.9101796407185628, 'recall': 0.8994082840236687, 'f1': 0.9047619047619048, 'number': 169} | {'precision': 0.8831168831168831, 'recall': 0.8662420382165605, 'f1': 0.8745980707395498, 'number': 157} | {'precision': 0.9097222222222222, 'recall': 0.8851351351351351, 'f1': 0.8972602739726027, 'number': 148} | {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112} | 0.9422 | 0.9376 | 0.9399 | 0.9946 |
|
79 |
+
| 0.0132 | 11.0 | 330 | 0.0278 | {'precision': 0.9754098360655737, 'recall': 1.0, 'f1': 0.9875518672199171, 'number': 119} | {'precision': 0.9664429530201343, 'recall': 0.9795918367346939, 'f1': 0.9729729729729729, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9565217391304348, 'recall': 0.9746835443037974, 'f1': 0.9655172413793103, 'number': 158} | {'precision': 0.9929577464788732, 'recall': 1.0, 'f1': 0.9964664310954063, 'number': 141} | {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150} | {'precision': 0.723404255319149, 'recall': 0.7640449438202247, 'f1': 0.7431693989071038, 'number': 89} | {'precision': 0.7604166666666666, 'recall': 0.9012345679012346, 'f1': 0.824858757062147, 'number': 81} | {'precision': 0.8895705521472392, 'recall': 0.847953216374269, 'f1': 0.8682634730538922, 'number': 171} | {'precision': 0.9, 'recall': 0.9053254437869822, 'f1': 0.9026548672566372, 'number': 169} | {'precision': 0.9060402684563759, 'recall': 0.8598726114649682, 'f1': 0.8823529411764707, 'number': 157} | {'precision': 0.8979591836734694, 'recall': 0.8918918918918919, 'f1': 0.8949152542372881, 'number': 148} | {'precision': 0.9316239316239316, 'recall': 0.9732142857142857, 'f1': 0.9519650655021833, 'number': 112} | 0.9273 | 0.9386 | 0.9329 | 0.9936 |
|
80 |
+
| 0.0122 | 12.0 | 360 | 0.0238 | {'precision': 0.9916666666666667, 'recall': 1.0, 'f1': 0.99581589958159, 'number': 119} | {'precision': 0.9666666666666667, 'recall': 0.9863945578231292, 'f1': 0.9764309764309764, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9506172839506173, 'recall': 0.9746835443037974, 'f1': 0.9625, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150} | {'precision': 0.8395061728395061, 'recall': 0.7640449438202247, 'f1': 0.8, 'number': 89} | {'precision': 0.9012345679012346, 'recall': 0.9012345679012346, 'f1': 0.9012345679012346, 'number': 81} | {'precision': 0.9245283018867925, 'recall': 0.8596491228070176, 'f1': 0.8909090909090909, 'number': 171} | {'precision': 0.9, 'recall': 0.9053254437869822, 'f1': 0.9026548672566372, 'number': 169} | {'precision': 0.8903225806451613, 'recall': 0.8789808917197452, 'f1': 0.8846153846153846, 'number': 157} | {'precision': 0.916083916083916, 'recall': 0.8851351351351351, 'f1': 0.9003436426116838, 'number': 148} | {'precision': 0.9478260869565217, 'recall': 0.9732142857142857, 'f1': 0.960352422907489, 'number': 112} | 0.9447 | 0.9410 | 0.9429 | 0.9950 |
|
81 |
+
| 0.0119 | 13.0 | 390 | 0.0234 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9447852760736196, 'recall': 0.9746835443037974, 'f1': 0.9595015576323987, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150} | {'precision': 0.8095238095238095, 'recall': 0.7640449438202247, 'f1': 0.7861271676300579, 'number': 89} | {'precision': 0.9125, 'recall': 0.9012345679012346, 'f1': 0.9068322981366459, 'number': 81} | {'precision': 0.9245283018867925, 'recall': 0.8596491228070176, 'f1': 0.8909090909090909, 'number': 171} | {'precision': 0.9107142857142857, 'recall': 0.9053254437869822, 'f1': 0.9080118694362018, 'number': 169} | {'precision': 0.8709677419354839, 'recall': 0.8598726114649682, 'f1': 0.8653846153846154, 'number': 157} | {'precision': 0.9290780141843972, 'recall': 0.8851351351351351, 'f1': 0.9065743944636678, 'number': 148} | {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112} | 0.9456 | 0.9401 | 0.9428 | 0.9950 |
|
82 |
+
| 0.0112 | 14.0 | 420 | 0.0235 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9506172839506173, 'recall': 0.9746835443037974, 'f1': 0.9625, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150} | {'precision': 0.8292682926829268, 'recall': 0.7640449438202247, 'f1': 0.7953216374269005, 'number': 89} | {'precision': 0.8674698795180723, 'recall': 0.8888888888888888, 'f1': 0.8780487804878048, 'number': 81} | {'precision': 0.9182389937106918, 'recall': 0.8538011695906432, 'f1': 0.8848484848484848, 'number': 171} | {'precision': 0.9058823529411765, 'recall': 0.9112426035502958, 'f1': 0.9085545722713865, 'number': 169} | {'precision': 0.8653846153846154, 'recall': 0.8598726114649682, 'f1': 0.8626198083067094, 'number': 157} | {'precision': 0.9225352112676056, 'recall': 0.8851351351351351, 'f1': 0.903448275862069, 'number': 148} | {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112} | 0.9432 | 0.9396 | 0.9414 | 0.9949 |
|
83 |
+
| 0.0115 | 15.0 | 450 | 0.0242 | {'precision': 0.9916666666666667, 'recall': 1.0, 'f1': 0.99581589958159, 'number': 119} | {'precision': 0.9668874172185431, 'recall': 0.9931972789115646, 'f1': 0.9798657718120806, 'number': 147} | {'precision': 0.9919354838709677, 'recall': 0.9609375, 'f1': 0.9761904761904763, 'number': 128} | {'precision': 0.9861111111111112, 'recall': 1.0, 'f1': 0.993006993006993, 'number': 142} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 140} | {'precision': 0.9506172839506173, 'recall': 0.9746835443037974, 'f1': 0.9625, 'number': 158} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 141} | {'precision': 0.9548387096774194, 'recall': 0.9866666666666667, 'f1': 0.9704918032786887, 'number': 150} | {'precision': 0.8192771084337349, 'recall': 0.7640449438202247, 'f1': 0.7906976744186045, 'number': 89} | {'precision': 0.8470588235294118, 'recall': 0.8888888888888888, 'f1': 0.8674698795180723, 'number': 81} | {'precision': 0.9182389937106918, 'recall': 0.8538011695906432, 'f1': 0.8848484848484848, 'number': 171} | {'precision': 0.9, 'recall': 0.9053254437869822, 'f1': 0.9026548672566372, 'number': 169} | {'precision': 0.8653846153846154, 'recall': 0.8598726114649682, 'f1': 0.8626198083067094, 'number': 157} | {'precision': 0.916083916083916, 'recall': 0.8851351351351351, 'f1': 0.9003436426116838, 'number': 148} | {'precision': 0.9732142857142857, 'recall': 0.9732142857142857, 'f1': 0.9732142857142857, 'number': 112} | 0.9405 | 0.9391 | 0.9398 | 0.9947 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.44.0
|
89 |
+
- Pytorch 2.4.0
|
90 |
+
- Datasets 2.21.0
|
91 |
+
- Tokenizers 0.19.1
|
logs/events.out.tfevents.1725975648.4403111a1764.36.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e1efb1a0728b9ab65a9cf33fb7f0b653405153fbab6e805c2f9bd3a14367b59
|
3 |
+
size 16920
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450585896
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:660d835d6f8f3b671105a16edc94c5a5dd9a607998bf2c44d511c562a770b449
|
3 |
size 450585896
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
5 |
+
"ocr_lang": null,
|
6 |
+
"processor_class": "LayoutLMv2Processor",
|
7 |
+
"resample": 2,
|
8 |
+
"size": {
|
9 |
+
"height": 224,
|
10 |
+
"width": 224
|
11 |
+
},
|
12 |
+
"tesseract_config": ""
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|