File size: 4,625 Bytes
487b0d0 b43332d 487b0d0 6cb46b7 487b0d0 6cb46b7 487b0d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
license: apache-2.0
base_model: DewiBrynJones/wav2vec2-xlsr-53-ft-btb-cv-cy
tags:
- automatic-speech-recognition
- ./data-configs/btb.json
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-btb-cv-ft-btb-cy-cand
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-btb-cv-ft-btb-cy-cand
This model is a fine-tuned version of [DewiBrynJones/wav2vec2-xlsr-53-ft-btb-cv-cy](https://huggingface.co/DewiBrynJones/wav2vec2-xlsr-53-ft-btb-cv-cy) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.3402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| No log | 0.0215 | 200 | inf | 0.5592 |
| No log | 0.0429 | 400 | inf | 0.4289 |
| 2.1964 | 0.0644 | 600 | inf | 0.4374 |
| 2.1964 | 0.0858 | 800 | inf | 0.4944 |
| 0.8327 | 0.1073 | 1000 | inf | 0.5150 |
| 0.8327 | 0.1287 | 1200 | inf | 0.5634 |
| 0.8327 | 0.1502 | 1400 | inf | 0.5355 |
| 0.91 | 0.1716 | 1600 | inf | 0.5152 |
| 0.91 | 0.1931 | 1800 | inf | 0.5595 |
| 0.8721 | 0.2145 | 2000 | inf | 0.5057 |
| 0.8721 | 0.2360 | 2200 | inf | 0.5041 |
| 0.8721 | 0.2574 | 2400 | inf | 0.5146 |
| 0.8218 | 0.2789 | 2600 | inf | 0.5018 |
| 0.8218 | 0.3003 | 2800 | inf | 0.5091 |
| 0.8469 | 0.3218 | 3000 | inf | 0.5037 |
| 0.8469 | 0.3432 | 3200 | inf | 0.4703 |
| 0.8469 | 0.3647 | 3400 | inf | 0.4795 |
| 0.8142 | 0.3861 | 3600 | inf | 0.4714 |
| 0.8142 | 0.4076 | 3800 | inf | 0.4554 |
| 0.8085 | 0.4290 | 4000 | inf | 0.4506 |
| 0.8085 | 0.4505 | 4200 | inf | 0.4458 |
| 0.8085 | 0.4720 | 4400 | inf | 0.4367 |
| 0.7802 | 0.4934 | 4600 | inf | 0.4401 |
| 0.7802 | 0.5149 | 4800 | inf | 0.4334 |
| 0.7493 | 0.5363 | 5000 | inf | 0.4224 |
| 0.7493 | 0.5578 | 5200 | inf | 0.4328 |
| 0.7493 | 0.5792 | 5400 | inf | 0.4176 |
| 0.7668 | 0.6007 | 5600 | inf | 0.4183 |
| 0.7668 | 0.6221 | 5800 | inf | 0.4030 |
| 0.6999 | 0.6436 | 6000 | inf | 0.4125 |
| 0.6999 | 0.6650 | 6200 | inf | 0.4076 |
| 0.6999 | 0.6865 | 6400 | inf | 0.3917 |
| 0.6918 | 0.7079 | 6600 | inf | 0.4004 |
| 0.6918 | 0.7294 | 6800 | inf | 0.3865 |
| 0.6888 | 0.7508 | 7000 | inf | 0.3785 |
| 0.6888 | 0.7723 | 7200 | inf | 0.3824 |
| 0.6888 | 0.7937 | 7400 | inf | 0.3743 |
| 0.646 | 0.8152 | 7600 | inf | 0.3673 |
| 0.646 | 0.8366 | 7800 | inf | 0.3667 |
| 0.6324 | 0.8581 | 8000 | inf | 0.3662 |
| 0.6324 | 0.8795 | 8200 | inf | 0.3601 |
| 0.6324 | 0.9010 | 8400 | inf | 0.3535 |
| 0.6221 | 0.9224 | 8600 | inf | 0.3526 |
| 0.6221 | 0.9439 | 8800 | inf | 0.3487 |
| 0.6215 | 0.9654 | 9000 | inf | 0.3481 |
| 0.6215 | 0.9868 | 9200 | inf | 0.3447 |
| 0.6215 | 1.0083 | 9400 | inf | 0.3410 |
| 0.5603 | 1.0297 | 9600 | inf | 0.3405 |
| 0.5603 | 1.0512 | 9800 | inf | 0.3412 |
| 0.5284 | 1.0726 | 10000 | inf | 0.3402 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|