DiegoD616 commited on
Commit
4433857
·
1 Parent(s): b0fc7dd

Subida de un modelo PPO para LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 264.76 +/- 25.33
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf02023dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf02023e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf02023ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf02023f70>", "_build": "<function ActorCriticPolicy._build at 0x7fdf02029040>", "forward": "<function ActorCriticPolicy.forward at 0x7fdf020290d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf02029160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdf020291f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf02029280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf02029310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf020293a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdf020224b0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671572147943346640, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKDOTD5mfYM+JnSSvgeTsr6Rw8A7IMgAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6C6JsyLiNkCUhpRSlIwBbJRL/YwBdJRHQJ7BniqABkt1fZQoaAZoCWgPQwgmGqTgqQpsQJSGlFKUaBVNRgFoFkdAnsOEjHGS6nV9lChoBmgJaA9DCPT8aaN6sHFAlIaUUpRoFU0wAWgWR0CexUq3EyckdX2UKGgGaAloD0MIOq5GdqWVWkCUhpRSlGgVTegDaBZHQJ7O0UbkwN91fZQoaAZoCWgPQwjK4Ch5dW5tQJSGlFKUaBVNGAFoFkdAntGlZgXuV3V9lChoBmgJaA9DCHEd44pLWXBAlIaUUpRoFU09AWgWR0Ce03RVZLZjdX2UKGgGaAloD0MIr9AHy9iIcECUhpRSlGgVTWABaBZHQJ7VlCQcPvt1fZQoaAZoCWgPQwgxYTQr27JrQJSGlFKUaBVNJgFoFkdAntdMo2GZeHV9lChoBmgJaA9DCP+SVKaY729AlIaUUpRoFU1DAWgWR0Ce2n3Tuv2XdX2UKGgGaAloD0MIBHRfzux2a0CUhpRSlGgVTUwBaBZHQJ7cjwob4rV1fZQoaAZoCWgPQwgaMbPP44tvQJSGlFKUaBVNdgFoFkdAnt8Al4TsY3V9lChoBmgJaA9DCLtgcM3dp3FAlIaUUpRoFU0mAWgWR0Ce4dSZ0CA+dX2UKGgGaAloD0MIqYdodIfxa0CUhpRSlGgVTTgBaBZHQJ7jvEdeY2N1fZQoaAZoCWgPQwiHiQYpeBZyQJSGlFKUaBVNOAFoFkdAnuWbXg9/0HV9lChoBmgJaA9DCMMPzqeOsXFAlIaUUpRoFU03AWgWR0Ce6K3fAKv3dX2UKGgGaAloD0MIOGvwvirNb0CUhpRSlGgVTUABaBZHQJ7qqOwPiDN1fZQoaAZoCWgPQwhTl4xjpE5zQJSGlFKUaBVNRQFoFkdAnuySULUkOnV9lChoBmgJaA9DCFFmg0zy/nBAlIaUUpRoFU0sAWgWR0Ce74JO32EkdX2UKGgGaAloD0MIYwtBDkoUb0CUhpRSlGgVTSgBaBZHQJ7xOscQyyl1fZQoaAZoCWgPQwgjFFtBE7BwQJSGlFKUaBVNIAFoFkdAnvMNvS+g13V9lChoBmgJaA9DCAjMQ6Z8Km9AlIaUUpRoFU0eAWgWR0Ce9Mkf9xZMdX2UKGgGaAloD0MIYto395dBckCUhpRSlGgVTUcBaBZHQJ735TR6WxB1fZQoaAZoCWgPQwhdbcX+8nBwQJSGlFKUaBVNIwFoFkdAnvmpXEIgNnV9lChoBmgJaA9DCIOG/gmujnBAlIaUUpRoFU0OAWgWR0Ce+z1q33HrdX2UKGgGaAloD0MIzuDvF7M3bUCUhpRSlGgVTQwBaBZHQJ7+HDej2zx1fZQoaAZoCWgPQwgW3A94oC1wQJSGlFKUaBVNSQFoFkdAnwAgJ1JUYXV9lChoBmgJaA9DCJrv4CfOHHFAlIaUUpRoFU0MAWgWR0CfAa0DU3GXdX2UKGgGaAloD0MIJv29FN4tckCUhpRSlGgVTXsBaBZHQJ8FGtV7x/d1fZQoaAZoCWgPQwjwTj49tnZuQJSGlFKUaBVNKQFoFkdAnwbbcXWOInV9lChoBmgJaA9DCN52obnOC3FAlIaUUpRoFU1iAWgWR0CfCQFDfFaTdX2UKGgGaAloD0MIK91dZ8NScUCUhpRSlGgVTU4BaBZHQJ8K89eQdS51fZQoaAZoCWgPQwjswDkjSjpuQJSGlFKUaBVNDgFoFkdAnw2jt1IRRXV9lChoBmgJaA9DCLMIxVbQ4G1AlIaUUpRoFU0MAWgWR0CfDy2ZAprldX2UKGgGaAloD0MILLZJRWPCcUCUhpRSlGgVTSkBaBZHQJ8Q8ENe+mF1fZQoaAZoCWgPQwgw8Nx7uFJxQJSGlFKUaBVNKQFoFkdAnxPWFN+LFXV9lChoBmgJaA9DCMNn6+CgHnBAlIaUUpRoFU0vAWgWR0CfFYtMPBi1dX2UKGgGaAloD0MIhbLw9bX8RUCUhpRSlGgVS8xoFkdAnxag3DNyHXV9lChoBmgJaA9DCKq2m+Cbo25AlIaUUpRoFU0FAWgWR0CfGBvnbItEdX2UKGgGaAloD0MIbCQJwhVrcECUhpRSlGgVS/VoFkdAnxqwjdHlO3V9lChoBmgJaA9DCAQg7upVhXBAlIaUUpRoFU1LAWgWR0CfHKWgOBlMdX2UKGgGaAloD0MI/fm2YKmoTUCUhpRSlGgVS89oFkdAnx3G5xzaK3V9lChoBmgJaA9DCPs726P3y3BAlIaUUpRoFU0hAWgWR0CfH2vES/TLdX2UKGgGaAloD0MIPQ6D+Ss5Y0CUhpRSlGgVTegDaBZHQJ8m/iXIEKV1fZQoaAZoCWgPQwi/DwcJ0eVxQJSGlFKUaBVNIwFoFkdAnyncUqQRw3V9lChoBmgJaA9DCCWWlLvPnUFAlIaUUpRoFUvaaBZHQJ8rFid8Rcx1fZQoaAZoCWgPQwi8rfTa7LtxQJSGlFKUaBVNCQFoFkdAnyyvqs2ehHV9lChoBmgJaA9DCIbmOo10lnFAlIaUUpRoFU0/AWgWR0CfLpP2wmmcdX2UKGgGaAloD0MIf7+YLVlFIcCUhpRSlGgVS9ZoFkdAnzDrXL/0d3V9lChoBmgJaA9DCB+i0R3Efh3AlIaUUpRoFUvYaBZHQJ8yFQ9A5aN1fZQoaAZoCWgPQwgx0/avrOxRQJSGlFKUaBVL2GgWR0CfMzSAH3UQdX2UKGgGaAloD0MISKgZUkVIcUCUhpRSlGgVTSYBaBZHQJ80yqFRHgB1fZQoaAZoCWgPQwjYEYdsIKduQJSGlFKUaBVNAgFoFkdAnzd1ZHNHH3V9lChoBmgJaA9DCHF0le5uq3JAlIaUUpRoFU1BAWgWR0CfOTczqKP5dX2UKGgGaAloD0MISn1Z2qnib0CUhpRSlGgVTRMBaBZHQJ86vSThYNl1fZQoaAZoCWgPQwh9CRUc3s9uQJSGlFKUaBVNKgFoFkdAnzx6eoUBXHV9lChoBmgJaA9DCCS3Jt2WNGtAlIaUUpRoFU01AWgWR0CfP3edkJ8fdX2UKGgGaAloD0MIIjXtYlrmcECUhpRSlGgVTS0BaBZHQJ9BLENvwVl1fZQoaAZoCWgPQwiy9ne2R4NIQJSGlFKUaBVL5WgWR0CfQmhHbypadX2UKGgGaAloD0MIisxc4PIVY0CUhpRSlGgVTegDaBZHQJ9KHowEhaF1fZQoaAZoCWgPQwgoYabt359vQJSGlFKUaBVNtQFoFkdAn03JRKpT/HV9lChoBmgJaA9DCNhF0QMfY2tAlIaUUpRoFU07AWgWR0CfT6EXcgyNdX2UKGgGaAloD0MIkiOdgVGhcUCUhpRSlGgVS/9oFkdAn1ECBClabHV9lChoBmgJaA9DCCUjZ2GPCnJAlIaUUpRoFU0jAWgWR0CfU+3uuzQedX2UKGgGaAloD0MImFDB4QVJN8CUhpRSlGgVS9doFkdAn1UNrTH80nV9lChoBmgJaA9DCAkWhzM/FWxAlIaUUpRoFU0WAWgWR0CfVqQTEit8dX2UKGgGaAloD0MIxvfFpSr1bECUhpRSlGgVTV0BaBZHQJ9YtJHy3Ct1fZQoaAZoCWgPQwiUhETaxphxQJSGlFKUaBVNJAFoFkdAn1usmF8G93V9lChoBmgJaA9DCB2SWiiZp21AlIaUUpRoFU0bAWgWR0CfXVbPhQ3xdX2UKGgGaAloD0MIFsPVAZCTYUCUhpRSlGgVTegDaBZHQJ9liKgqVhV1fZQoaAZoCWgPQwilv5fCg45yQJSGlFKUaBVNIQFoFkdAn2chYFJQL3V9lChoBmgJaA9DCNy93CeHk3JAlIaUUpRoFU0nAWgWR0CfaODaoMrmdX2UKGgGaAloD0MIhv90A4VZcUCUhpRSlGgVTQsBaBZHQJ9ro7r9l3B1fZQoaAZoCWgPQwgVyVcCKQBvQJSGlFKUaBVNEQFoFkdAn21E0Nz8xnV9lChoBmgJaA9DCM+goX/Cx3FAlIaUUpRoFU0nAWgWR0CfbuQO4G2UdX2UKGgGaAloD0MIAaJgxlQEcECUhpRSlGgVTS0BaBZHQJ9x4AKfFrF1fZQoaAZoCWgPQwiskPKTav9AQJSGlFKUaBVLumgWR0CfcuMB6rvLdX2UKGgGaAloD0MIOfHVjuJQR0CUhpRSlGgVS+doFkdAn3Q8lb/wRXV9lChoBmgJaA9DCF37AnphHmtAlIaUUpRoFU0bAWgWR0CfdeRQaaTfdX2UKGgGaAloD0MIRWRYxZuvbECUhpRSlGgVTTABaBZHQJ94vTZxrBV1fZQoaAZoCWgPQwjkLOxpB3twQJSGlFKUaBVNCgFoFkdAn3pBL5AQhHV9lChoBmgJaA9DCMHlsWZkOm9AlIaUUpRoFU0xAWgWR0CffCqMWGh3dX2UKGgGaAloD0MI/vM0YNDeckCUhpRSlGgVTSoBaBZHQJ995prULD11fZQoaAZoCWgPQwijsIuihyxzQJSGlFKUaBVNTwFoFkdAn4EInF5v+HV9lChoBmgJaA9DCJ3Ul6VdGHBAlIaUUpRoFU0IAWgWR0CfgouMuOCHdX2UKGgGaAloD0MInIcTmE4lXkCUhpRSlGgVTegDaBZHQJ+MsCih37l1fZQoaAZoCWgPQwj3OqkvS2NwQJSGlFKUaBVNMAFoFkdAn45pwsGxEHV9lChoBmgJaA9DCHb+7bJfTnNAlIaUUpRoFU0LAWgWR0CfkSgGbCrMdX2UKGgGaAloD0MITODW3fxYcECUhpRSlGgVTScBaBZHQJ+S1z6rNnp1fZQoaAZoCWgPQwj03hgCgLlMQJSGlFKUaBVLxGgWR0Cfk+JGOMl1dX2UKGgGaAloD0MIIsfWM0SScECUhpRSlGgVTTYBaBZHQJ+Vp7sv7Fd1fZQoaAZoCWgPQwi0keumFN9iQJSGlFKUaBVN6ANoFkdAn524Bq9GqnV9lChoBmgJaA9DCBdJu9HHTXBAlIaUUpRoFU1TAWgWR0CfoQk30f5ldX2UKGgGaAloD0MIEY5Z9iSKYUCUhpRSlGgVTegDaBZHQJ+p0FEAo5R1fZQoaAZoCWgPQwhDklm9Q7dyQJSGlFKUaBVNAgJoFkdAn6zCw4bS7XV9lChoBmgJaA9DCKLQsu4fJUxAlIaUUpRoFUvWaBZHQJ+t6Gi5/b11fZQoaAZoCWgPQwh+VwT/W2dCQJSGlFKUaBVL0WgWR0CfsE34sVcmdX2UKGgGaAloD0MI9bpFYGw2cUCUhpRSlGgVTfABaBZHQJ+zd1DBuXN1fZQoaAZoCWgPQwgRUUzeALMpQJSGlFKUaBVL8GgWR0CftMis4ku6dX2UKGgGaAloD0MI9poeFJTobECUhpRSlGgVTRQBaBZHQJ+2WqKgqVh1fZQoaAZoCWgPQwjarWUyHKttQJSGlFKUaBVNcwNoFkdAn74ic0+C9XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-CR_19122022.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7376d2840a40147f6bb89eda01b58374c54d125647bc162bfc5df400aaa2b54f
3
+ size 146670
ppo-LunarLander-CR_19122022/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-CR_19122022/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf02023dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf02023e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf02023ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf02023f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdf02029040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdf020290d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf02029160>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdf020291f0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf02029280>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf02029310>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf020293a0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fdf020224b0>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 1000448,
46
+ "_total_timesteps": 1000000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671572147943346640,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKDOTD5mfYM+JnSSvgeTsr6Rw8A7IMgAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00044800000000000395,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6C6JsyLiNkCUhpRSlIwBbJRL/YwBdJRHQJ7BniqABkt1fZQoaAZoCWgPQwgmGqTgqQpsQJSGlFKUaBVNRgFoFkdAnsOEjHGS6nV9lChoBmgJaA9DCPT8aaN6sHFAlIaUUpRoFU0wAWgWR0CexUq3EyckdX2UKGgGaAloD0MIOq5GdqWVWkCUhpRSlGgVTegDaBZHQJ7O0UbkwN91fZQoaAZoCWgPQwjK4Ch5dW5tQJSGlFKUaBVNGAFoFkdAntGlZgXuV3V9lChoBmgJaA9DCHEd44pLWXBAlIaUUpRoFU09AWgWR0Ce03RVZLZjdX2UKGgGaAloD0MIr9AHy9iIcECUhpRSlGgVTWABaBZHQJ7VlCQcPvt1fZQoaAZoCWgPQwgxYTQr27JrQJSGlFKUaBVNJgFoFkdAntdMo2GZeHV9lChoBmgJaA9DCP+SVKaY729AlIaUUpRoFU1DAWgWR0Ce2n3Tuv2XdX2UKGgGaAloD0MIBHRfzux2a0CUhpRSlGgVTUwBaBZHQJ7cjwob4rV1fZQoaAZoCWgPQwgaMbPP44tvQJSGlFKUaBVNdgFoFkdAnt8Al4TsY3V9lChoBmgJaA9DCLtgcM3dp3FAlIaUUpRoFU0mAWgWR0Ce4dSZ0CA+dX2UKGgGaAloD0MIqYdodIfxa0CUhpRSlGgVTTgBaBZHQJ7jvEdeY2N1fZQoaAZoCWgPQwiHiQYpeBZyQJSGlFKUaBVNOAFoFkdAnuWbXg9/0HV9lChoBmgJaA9DCMMPzqeOsXFAlIaUUpRoFU03AWgWR0Ce6K3fAKv3dX2UKGgGaAloD0MIOGvwvirNb0CUhpRSlGgVTUABaBZHQJ7qqOwPiDN1fZQoaAZoCWgPQwhTl4xjpE5zQJSGlFKUaBVNRQFoFkdAnuySULUkOnV9lChoBmgJaA9DCFFmg0zy/nBAlIaUUpRoFU0sAWgWR0Ce74JO32EkdX2UKGgGaAloD0MIYwtBDkoUb0CUhpRSlGgVTSgBaBZHQJ7xOscQyyl1fZQoaAZoCWgPQwgjFFtBE7BwQJSGlFKUaBVNIAFoFkdAnvMNvS+g13V9lChoBmgJaA9DCAjMQ6Z8Km9AlIaUUpRoFU0eAWgWR0Ce9Mkf9xZMdX2UKGgGaAloD0MIYto395dBckCUhpRSlGgVTUcBaBZHQJ735TR6WxB1fZQoaAZoCWgPQwhdbcX+8nBwQJSGlFKUaBVNIwFoFkdAnvmpXEIgNnV9lChoBmgJaA9DCIOG/gmujnBAlIaUUpRoFU0OAWgWR0Ce+z1q33HrdX2UKGgGaAloD0MIzuDvF7M3bUCUhpRSlGgVTQwBaBZHQJ7+HDej2zx1fZQoaAZoCWgPQwgW3A94oC1wQJSGlFKUaBVNSQFoFkdAnwAgJ1JUYXV9lChoBmgJaA9DCJrv4CfOHHFAlIaUUpRoFU0MAWgWR0CfAa0DU3GXdX2UKGgGaAloD0MIJv29FN4tckCUhpRSlGgVTXsBaBZHQJ8FGtV7x/d1fZQoaAZoCWgPQwjwTj49tnZuQJSGlFKUaBVNKQFoFkdAnwbbcXWOInV9lChoBmgJaA9DCN52obnOC3FAlIaUUpRoFU1iAWgWR0CfCQFDfFaTdX2UKGgGaAloD0MIK91dZ8NScUCUhpRSlGgVTU4BaBZHQJ8K89eQdS51fZQoaAZoCWgPQwjswDkjSjpuQJSGlFKUaBVNDgFoFkdAnw2jt1IRRXV9lChoBmgJaA9DCLMIxVbQ4G1AlIaUUpRoFU0MAWgWR0CfDy2ZAprldX2UKGgGaAloD0MILLZJRWPCcUCUhpRSlGgVTSkBaBZHQJ8Q8ENe+mF1fZQoaAZoCWgPQwgw8Nx7uFJxQJSGlFKUaBVNKQFoFkdAnxPWFN+LFXV9lChoBmgJaA9DCMNn6+CgHnBAlIaUUpRoFU0vAWgWR0CfFYtMPBi1dX2UKGgGaAloD0MIhbLw9bX8RUCUhpRSlGgVS8xoFkdAnxag3DNyHXV9lChoBmgJaA9DCKq2m+Cbo25AlIaUUpRoFU0FAWgWR0CfGBvnbItEdX2UKGgGaAloD0MIbCQJwhVrcECUhpRSlGgVS/VoFkdAnxqwjdHlO3V9lChoBmgJaA9DCAQg7upVhXBAlIaUUpRoFU1LAWgWR0CfHKWgOBlMdX2UKGgGaAloD0MI/fm2YKmoTUCUhpRSlGgVS89oFkdAnx3G5xzaK3V9lChoBmgJaA9DCPs726P3y3BAlIaUUpRoFU0hAWgWR0CfH2vES/TLdX2UKGgGaAloD0MIPQ6D+Ss5Y0CUhpRSlGgVTegDaBZHQJ8m/iXIEKV1fZQoaAZoCWgPQwi/DwcJ0eVxQJSGlFKUaBVNIwFoFkdAnyncUqQRw3V9lChoBmgJaA9DCCWWlLvPnUFAlIaUUpRoFUvaaBZHQJ8rFid8Rcx1fZQoaAZoCWgPQwi8rfTa7LtxQJSGlFKUaBVNCQFoFkdAnyyvqs2ehHV9lChoBmgJaA9DCIbmOo10lnFAlIaUUpRoFU0/AWgWR0CfLpP2wmmcdX2UKGgGaAloD0MIf7+YLVlFIcCUhpRSlGgVS9ZoFkdAnzDrXL/0d3V9lChoBmgJaA9DCB+i0R3Efh3AlIaUUpRoFUvYaBZHQJ8yFQ9A5aN1fZQoaAZoCWgPQwgx0/avrOxRQJSGlFKUaBVL2GgWR0CfMzSAH3UQdX2UKGgGaAloD0MISKgZUkVIcUCUhpRSlGgVTSYBaBZHQJ80yqFRHgB1fZQoaAZoCWgPQwjYEYdsIKduQJSGlFKUaBVNAgFoFkdAnzd1ZHNHH3V9lChoBmgJaA9DCHF0le5uq3JAlIaUUpRoFU1BAWgWR0CfOTczqKP5dX2UKGgGaAloD0MISn1Z2qnib0CUhpRSlGgVTRMBaBZHQJ86vSThYNl1fZQoaAZoCWgPQwh9CRUc3s9uQJSGlFKUaBVNKgFoFkdAnzx6eoUBXHV9lChoBmgJaA9DCCS3Jt2WNGtAlIaUUpRoFU01AWgWR0CfP3edkJ8fdX2UKGgGaAloD0MIIjXtYlrmcECUhpRSlGgVTS0BaBZHQJ9BLENvwVl1fZQoaAZoCWgPQwiy9ne2R4NIQJSGlFKUaBVL5WgWR0CfQmhHbypadX2UKGgGaAloD0MIisxc4PIVY0CUhpRSlGgVTegDaBZHQJ9KHowEhaF1fZQoaAZoCWgPQwgoYabt359vQJSGlFKUaBVNtQFoFkdAn03JRKpT/HV9lChoBmgJaA9DCNhF0QMfY2tAlIaUUpRoFU07AWgWR0CfT6EXcgyNdX2UKGgGaAloD0MIkiOdgVGhcUCUhpRSlGgVS/9oFkdAn1ECBClabHV9lChoBmgJaA9DCCUjZ2GPCnJAlIaUUpRoFU0jAWgWR0CfU+3uuzQedX2UKGgGaAloD0MImFDB4QVJN8CUhpRSlGgVS9doFkdAn1UNrTH80nV9lChoBmgJaA9DCAkWhzM/FWxAlIaUUpRoFU0WAWgWR0CfVqQTEit8dX2UKGgGaAloD0MIxvfFpSr1bECUhpRSlGgVTV0BaBZHQJ9YtJHy3Ct1fZQoaAZoCWgPQwiUhETaxphxQJSGlFKUaBVNJAFoFkdAn1usmF8G93V9lChoBmgJaA9DCB2SWiiZp21AlIaUUpRoFU0bAWgWR0CfXVbPhQ3xdX2UKGgGaAloD0MIFsPVAZCTYUCUhpRSlGgVTegDaBZHQJ9liKgqVhV1fZQoaAZoCWgPQwilv5fCg45yQJSGlFKUaBVNIQFoFkdAn2chYFJQL3V9lChoBmgJaA9DCNy93CeHk3JAlIaUUpRoFU0nAWgWR0CfaODaoMrmdX2UKGgGaAloD0MIhv90A4VZcUCUhpRSlGgVTQsBaBZHQJ9ro7r9l3B1fZQoaAZoCWgPQwgVyVcCKQBvQJSGlFKUaBVNEQFoFkdAn21E0Nz8xnV9lChoBmgJaA9DCM+goX/Cx3FAlIaUUpRoFU0nAWgWR0CfbuQO4G2UdX2UKGgGaAloD0MIAaJgxlQEcECUhpRSlGgVTS0BaBZHQJ9x4AKfFrF1fZQoaAZoCWgPQwiskPKTav9AQJSGlFKUaBVLumgWR0CfcuMB6rvLdX2UKGgGaAloD0MIOfHVjuJQR0CUhpRSlGgVS+doFkdAn3Q8lb/wRXV9lChoBmgJaA9DCF37AnphHmtAlIaUUpRoFU0bAWgWR0CfdeRQaaTfdX2UKGgGaAloD0MIRWRYxZuvbECUhpRSlGgVTTABaBZHQJ94vTZxrBV1fZQoaAZoCWgPQwjkLOxpB3twQJSGlFKUaBVNCgFoFkdAn3pBL5AQhHV9lChoBmgJaA9DCMHlsWZkOm9AlIaUUpRoFU0xAWgWR0CffCqMWGh3dX2UKGgGaAloD0MI/vM0YNDeckCUhpRSlGgVTSoBaBZHQJ995prULD11fZQoaAZoCWgPQwijsIuihyxzQJSGlFKUaBVNTwFoFkdAn4EInF5v+HV9lChoBmgJaA9DCJ3Ul6VdGHBAlIaUUpRoFU0IAWgWR0CfgouMuOCHdX2UKGgGaAloD0MInIcTmE4lXkCUhpRSlGgVTegDaBZHQJ+MsCih37l1fZQoaAZoCWgPQwj3OqkvS2NwQJSGlFKUaBVNMAFoFkdAn45pwsGxEHV9lChoBmgJaA9DCHb+7bJfTnNAlIaUUpRoFU0LAWgWR0CfkSgGbCrMdX2UKGgGaAloD0MITODW3fxYcECUhpRSlGgVTScBaBZHQJ+S1z6rNnp1fZQoaAZoCWgPQwj03hgCgLlMQJSGlFKUaBVLxGgWR0Cfk+JGOMl1dX2UKGgGaAloD0MIIsfWM0SScECUhpRSlGgVTTYBaBZHQJ+Vp7sv7Fd1fZQoaAZoCWgPQwi0keumFN9iQJSGlFKUaBVN6ANoFkdAn524Bq9GqnV9lChoBmgJaA9DCBdJu9HHTXBAlIaUUpRoFU1TAWgWR0CfoQk30f5ldX2UKGgGaAloD0MIEY5Z9iSKYUCUhpRSlGgVTegDaBZHQJ+p0FEAo5R1fZQoaAZoCWgPQwhDklm9Q7dyQJSGlFKUaBVNAgJoFkdAn6zCw4bS7XV9lChoBmgJaA9DCKLQsu4fJUxAlIaUUpRoFUvWaBZHQJ+t6Gi5/b11fZQoaAZoCWgPQwh+VwT/W2dCQJSGlFKUaBVL0WgWR0CfsE34sVcmdX2UKGgGaAloD0MI9bpFYGw2cUCUhpRSlGgVTfABaBZHQJ+zd1DBuXN1fZQoaAZoCWgPQwgRUUzeALMpQJSGlFKUaBVL8GgWR0CftMis4ku6dX2UKGgGaAloD0MI9poeFJTobECUhpRSlGgVTRQBaBZHQJ+2WqKgqVh1fZQoaAZoCWgPQwjarWUyHKttQJSGlFKUaBVNcwNoFkdAn74ic0+C9XVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 3908,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-CR_19122022/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6d3c67fd50b5974d1bda0379cca1fadb4021e900b7ebcbd3ef92ff17d50d5cb
3
+ size 88057
ppo-LunarLander-CR_19122022/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37750d36aa32d33e661143169d60b2cf2ff3f38ed45c0dae32ea6b3ccb681308
3
+ size 43201
ppo-LunarLander-CR_19122022/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-CR_19122022/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (234 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.76374927533226, "std_reward": 25.32792137416178, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T22:30:17.370147"}