File size: 1,519 Bytes
62ae115 f8430f4 62ae115 f8430f4 16bc0f9 acae413 dd986a8 f93990d dd986a8 f93990d dd986a8 a6aa6c8 16bc0f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
license: apache-2.0
language:
- en
- fr
- it
- es
- de
---
# Mixtral 7b 8 Expert
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62e3b6ab0c2a907c388e4965/6m3e2d2BNXDjy6_qHd2LT.png)
This is a preliminary HuggingFace implementation of the newly released MoE model by MistralAi. Make sure to load with `trust_remote_code=True`.
Thanks to @dzhulgakov for his early implementation (https://github.com/dzhulgakov/llama-mistral) that helped me find a working setup.
Also many thanks to our friends at [LAION](https://laion.ai) and [HessianAI](https://hessian.ai/) for the compute used for these projects!
Benchmark scores:
```
hella swag: 0.8661
winogrande: 0.824
truthfulqa_mc2: 0.4855
arc_challenge: 0.6638
gsm8k: 0.5709
MMLU: 0.7173
```
# Basic Inference setup
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("DiscoResearch/mixtral-7b-8expert", low_cpu_mem_usage=True, device_map="auto", trust_remote_code=True)
tok = AutoTokenizer.from_pretrained("DiscoResearch/mixtral-7b-8expert")
x = tok.encode("The mistral wind in is a phenomenon ", return_tensors="pt").cuda()
x = model.generate(x, max_new_tokens=128).cpu()
print(tok.batch_decode(x))
```
# Conversion
Use `convert_mistral_moe_weights_to_hf.py --input_dir ./input_dir --model_size 7B --output_dir ./output` to convert the original consolidated weights to this HF setup.
Come chat about this in our [Disco(rd)](https://discord.gg/S8W8B5nz3v)! :) |