bjoernp commited on
Commit
9dc7665
·
1 Parent(s): a8122dd

Upload 3 files

Browse files
configuration_moe_mistral.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Mistral model configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
25
+ "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
26
+ }
27
+
28
+
29
+ class MixtralConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
32
+ Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
33
+ with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
34
+
35
+ [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
36
+ [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+
42
+ Args:
43
+ vocab_size (`int`, *optional*, defaults to 32000):
44
+ Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
45
+ `inputs_ids` passed when calling [`MistralModel`]
46
+ hidden_size (`int`, *optional*, defaults to 4096):
47
+ Dimension of the hidden representations.
48
+ intermediate_size (`int`, *optional*, defaults to 14336):
49
+ Dimension of the MLP representations.
50
+ num_hidden_layers (`int`, *optional*, defaults to 32):
51
+ Number of hidden layers in the Transformer encoder.
52
+ num_attention_heads (`int`, *optional*, defaults to 32):
53
+ Number of attention heads for each attention layer in the Transformer encoder.
54
+ num_key_value_heads (`int`, *optional*, defaults to 8):
55
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
56
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
57
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
58
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
59
+ by meanpooling all the original heads within that group. For more details checkout [this
60
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
64
+ The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
65
+ allows sequence of up to 4096*32 tokens.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ The id of the padding token.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ The id of the "beginning-of-sequence" token.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ The id of the "end-of-sequence" token.
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether the model's input and output word embeddings should be tied.
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ sliding_window (`int`, *optional*, defaults to 4096):
84
+ Sliding window attention window size. If not specified, will default to `4096`.
85
+ attention_dropout (`float`, *optional*, defaults to 0.0):
86
+ The dropout ratio for the attention probabilities.
87
+
88
+ ```python
89
+ >>> from transformers import MistralModel, MistralConfig
90
+
91
+ >>> # Initializing a Mistral 7B style configuration
92
+ >>> configuration = MistralConfig()
93
+
94
+ >>> # Initializing a model from the Mistral 7B style configuration
95
+ >>> model = MistralModel(configuration)
96
+
97
+ >>> # Accessing the model configuration
98
+ >>> configuration = model.config
99
+ ```"""
100
+
101
+ model_type = "mistral"
102
+ keys_to_ignore_at_inference = ["past_key_values"]
103
+
104
+ def __init__(
105
+ self,
106
+ vocab_size=32000,
107
+ hidden_size=4096,
108
+ intermediate_size=14336,
109
+ num_hidden_layers=32,
110
+ num_attention_heads=32,
111
+ num_key_value_heads=8,
112
+ hidden_act="silu",
113
+ max_position_embeddings=4096 * 32,
114
+ initializer_range=0.02,
115
+ rms_norm_eps=1e-6,
116
+ use_cache=True,
117
+ pad_token_id=None,
118
+ bos_token_id=1,
119
+ eos_token_id=2,
120
+ tie_word_embeddings=False,
121
+ rope_theta=10000.0,
122
+ attention_dropout=0.0,
123
+ num_experts_per_token=2,
124
+ num_experts=8,
125
+ **kwargs,
126
+ ):
127
+ self.vocab_size = vocab_size
128
+ self.max_position_embeddings = max_position_embeddings
129
+ self.hidden_size = hidden_size
130
+ self.intermediate_size = intermediate_size
131
+ self.num_hidden_layers = num_hidden_layers
132
+ self.num_attention_heads = num_attention_heads
133
+
134
+ # for backward compatibility
135
+ if num_key_value_heads is None:
136
+ num_key_value_heads = num_attention_heads
137
+
138
+ self.num_key_value_heads = num_key_value_heads
139
+ self.hidden_act = hidden_act
140
+ self.initializer_range = initializer_range
141
+ self.rms_norm_eps = rms_norm_eps
142
+ self.use_cache = use_cache
143
+ self.rope_theta = rope_theta
144
+ self.attention_dropout = attention_dropout
145
+ self.num_experts = num_experts
146
+ self.num_experts_per_token = num_experts_per_token
147
+
148
+ super().__init__(
149
+ pad_token_id=pad_token_id,
150
+ bos_token_id=bos_token_id,
151
+ eos_token_id=eos_token_id,
152
+ tie_word_embeddings=tie_word_embeddings,
153
+ **kwargs,
154
+ )
convert_mistral_moe_weights_to_hf.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import argparse
15
+ import gc
16
+ import json
17
+ import os
18
+ import shutil
19
+ import warnings
20
+
21
+ import torch
22
+
23
+ from transformers import (
24
+ LlamaTokenizer
25
+ )
26
+
27
+ from transformers.models.mistral.modeling_moe_mistral import MixtralForCausalLM
28
+ from transformers.models.mistral.configuration_dmoe_mistral import MixtralConfig
29
+
30
+ try:
31
+ from transformers import LlamaTokenizerFast
32
+
33
+ tokenizer_class = LlamaTokenizerFast
34
+ except ImportError as e:
35
+ warnings.warn(e)
36
+ warnings.warn(
37
+ "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
38
+ )
39
+ tokenizer_class = LlamaTokenizer
40
+
41
+ """
42
+ Sample usage:
43
+
44
+ ```
45
+ python src/transformers/models/mistral/convert_mistral_weights_to_hf.py \
46
+ --input_dir /path/to/downloaded/mistral/weights --model_size 7B --output_dir /output/path
47
+ ```
48
+
49
+ Thereafter, models can be loaded via:
50
+
51
+ ```py
52
+ from transformers import MistralForCausalLM, LlamaTokenizer
53
+
54
+ model = MistralForCausalLM.from_pretrained("/output/path")
55
+ tokenizer = LlamaTokenizer.from_pretrained("/output/path")
56
+ ```
57
+
58
+ Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
59
+ come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
60
+ """
61
+
62
+ NUM_SHARDS = {"7B": 1}
63
+
64
+
65
+ def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
66
+ return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
67
+
68
+
69
+ def read_json(path):
70
+ with open(path, "r") as f:
71
+ return json.load(f)
72
+
73
+
74
+ def write_json(text, path):
75
+ with open(path, "w") as f:
76
+ json.dump(text, f)
77
+
78
+
79
+ def write_model(model_path, input_base_path, model_size, tokenizer_path=None, safe_serialization=True):
80
+ # for backward compatibility, before you needed the repo to be called `my_repo/model_size`
81
+ if not os.path.isfile(os.path.join(input_base_path, "params.json")):
82
+ input_base_path = os.path.join(input_base_path, model_size)
83
+
84
+ os.makedirs(model_path, exist_ok=True)
85
+ tmp_model_path = os.path.join(model_path, "tmp")
86
+ os.makedirs(tmp_model_path, exist_ok=True)
87
+
88
+ params = read_json(os.path.join(input_base_path, "params.json"))
89
+ num_shards = NUM_SHARDS[model_size]
90
+
91
+ n_layers = params["n_layers"]
92
+ n_heads = params["n_heads"]
93
+ n_heads_per_shard = n_heads // num_shards
94
+ dim = params["dim"]
95
+ dims_per_head = dim // n_heads
96
+ base = params.get("rope_theta", 100000.0)
97
+ inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
98
+ max_position_embeddings = 4096 * 8
99
+ num_experts_per_token = params["moe"]["num_experts_per_tok"]
100
+ num_experts = params["moe"]["num_experts"]
101
+
102
+
103
+ if tokenizer_path is not None:
104
+ tokenizer = tokenizer_class(tokenizer_path)
105
+ tokenizer.save_pretrained(model_path)
106
+ vocab_size = tokenizer.vocab_size if tokenizer_path is not None else 32000
107
+
108
+ if "n_kv_heads" in params:
109
+ num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
110
+ num_local_key_value_heads = num_key_value_heads // num_shards
111
+ key_value_dim = dims_per_head * num_local_key_value_heads
112
+ else: # compatibility with other checkpoints
113
+ num_key_value_heads = n_heads
114
+ num_local_key_value_heads = n_heads_per_shard
115
+ key_value_dim = dim
116
+
117
+ # permute for sliced rotary
118
+ def permute(w, n_heads=n_heads, dim1=dim, dim2=dim):
119
+ return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
120
+
121
+
122
+ print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
123
+ # Load weights
124
+ loaded = [
125
+ torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
126
+ for i in range(num_shards)
127
+ ]
128
+ param_count = 0
129
+ index_dict = {"weight_map": {}}
130
+ for layer_i in range(n_layers):
131
+ filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
132
+
133
+ # Sharded
134
+ # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
135
+ # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
136
+ # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
137
+
138
+ state_dict = {
139
+ f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
140
+ f"layers.{layer_i}.attention_norm.weight"
141
+ ].clone(),
142
+ f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
143
+ f"layers.{layer_i}.ffn_norm.weight"
144
+ ].clone(),
145
+ }
146
+ state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
147
+ torch.cat(
148
+ [
149
+ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
150
+ for i in range(num_shards)
151
+ ],
152
+ dim=0,
153
+ ).reshape(dim, dim)
154
+ )
155
+ state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
156
+ torch.cat(
157
+ [
158
+ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
159
+ num_local_key_value_heads, dims_per_head, dim
160
+ )
161
+ for i in range(num_shards)
162
+ ],
163
+ dim=0,
164
+ ).reshape(key_value_dim, dim),
165
+ num_key_value_heads,
166
+ key_value_dim,
167
+ dim,
168
+ )
169
+ state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
170
+ [
171
+ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(num_local_key_value_heads, dims_per_head, dim)
172
+ for i in range(num_shards)
173
+ ],
174
+ dim=0,
175
+ ).reshape(key_value_dim, dim)
176
+
177
+ state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
178
+ [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
179
+ )
180
+
181
+ for expert in range(num_experts):
182
+ state_dict[f"model.layers.{layer_i}.mlp.experts.{expert}.w1.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.experts.{expert}.w1.weight"]
183
+ state_dict[f"model.layers.{layer_i}.mlp.experts.{expert}.w2.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.experts.{expert}.w2.weight"]
184
+ state_dict[f"model.layers.{layer_i}.mlp.experts.{expert}.w3.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.experts.{expert}.w3.weight"]
185
+
186
+ state_dict[f"model.layers.{layer_i}.mlp.gate.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.gate.weight"]
187
+
188
+ state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
189
+ for k, v in state_dict.items():
190
+ index_dict["weight_map"][k] = filename
191
+ param_count += v.numel()
192
+ torch.save(state_dict, os.path.join(tmp_model_path, filename))
193
+
194
+ filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
195
+ state_dict = {
196
+ "model.norm.weight": loaded[0]["norm.weight"],
197
+ "model.embed_tokens.weight": torch.cat([loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1),
198
+ "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
199
+ }
200
+
201
+ for k, v in state_dict.items():
202
+ index_dict["weight_map"][k] = filename
203
+ param_count += v.numel()
204
+ print(param_count)
205
+ torch.save(state_dict, os.path.join(tmp_model_path, filename))
206
+
207
+ index_dict["metadata"] = {"total_size": param_count * 2}
208
+ write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
209
+ config = MixtralConfig(
210
+ hidden_size=dim,
211
+ intermediate_size=params["hidden_dim"],
212
+ num_attention_heads=params["n_heads"],
213
+ num_hidden_layers=params["n_layers"],
214
+ rms_norm_eps=params["norm_eps"],
215
+ num_key_value_heads=num_key_value_heads,
216
+ vocab_size=vocab_size,
217
+ rope_theta=base,
218
+ max_position_embeddings=max_position_embeddings,
219
+ num_experts=num_experts,
220
+ num_experts_per_token=num_experts_per_token
221
+ )
222
+ config.save_pretrained(tmp_model_path)
223
+
224
+ del state_dict
225
+ del loaded
226
+ gc.collect()
227
+
228
+ print("Loading the checkpoint in a Mistral model.")
229
+ model = MixtralForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
230
+ # Avoid saving this as part of the config.
231
+ del model.config._name_or_path
232
+ model.config.torch_dtype = torch.float16
233
+ print("Saving in the Transformers format.")
234
+ model.save_pretrained(model_path, safe_serialization=safe_serialization)
235
+ shutil.rmtree(tmp_model_path)
236
+
237
+
238
+ def write_tokenizer(tokenizer_path, input_tokenizer_path):
239
+ # Initialize the tokenizer based on the `spm` model
240
+ print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
241
+ tokenizer = tokenizer_class(input_tokenizer_path)
242
+ tokenizer.save_pretrained(tokenizer_path)
243
+
244
+
245
+ def main():
246
+ parser = argparse.ArgumentParser()
247
+ parser.add_argument(
248
+ "--input_dir",
249
+ help="Location of Mistral weights, which contains tokenizer.model and model folders",
250
+ )
251
+ parser.add_argument(
252
+ "--model_size",
253
+ choices=["7B", "tokenizer_only"],
254
+ help="'f' models correspond to the finetuned versions, and are specific to the Mistral2 official release. For more details on Mistral2, checkout the original repo: https://huggingface.co/meta-mistral",
255
+ )
256
+ parser.add_argument(
257
+ "--output_dir",
258
+ help="Location to write HF model and tokenizer",
259
+ )
260
+ parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.")
261
+ args = parser.parse_args()
262
+ spm_path = os.path.join(args.input_dir, "tokenizer.model")
263
+ if args.model_size != "tokenizer_only":
264
+ write_model(
265
+ model_path=args.output_dir,
266
+ input_base_path=args.input_dir,
267
+ model_size=args.model_size,
268
+ safe_serialization=args.safe_serialization,
269
+ tokenizer_path=spm_path,
270
+ )
271
+ else:
272
+ write_tokenizer(args.output_dir, spm_path)
273
+
274
+
275
+ if __name__ == "__main__":
276
+ main()
modeling_moe_mistral.py ADDED
@@ -0,0 +1,1323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Mistral model."""
21
+ import inspect
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from ...activations import ACT2FN
33
+ from ...cache_utils import Cache, DynamicCache
34
+ from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
35
+ from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
36
+ from ...modeling_utils import PreTrainedModel
37
+ from ...utils import (
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ is_flash_attn_2_available,
41
+ is_flash_attn_greater_or_equal_2_10,
42
+ logging,
43
+ replace_return_docstrings,
44
+ )
45
+ from .configuration_dmoe_mistral import MixtralConfig
46
+
47
+
48
+
49
+ if is_flash_attn_2_available():
50
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
51
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
52
+
53
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
54
+
55
+
56
+ logger = logging.get_logger(__name__)
57
+
58
+ _CONFIG_FOR_DOC = "MixtralConfig"
59
+
60
+
61
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
62
+ def _get_unpad_data(attention_mask):
63
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
64
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
65
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
66
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
67
+ return (
68
+ indices,
69
+ cu_seqlens,
70
+ max_seqlen_in_batch,
71
+ )
72
+
73
+
74
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
75
+ class MistralRMSNorm(nn.Module):
76
+ def __init__(self, hidden_size, eps=1e-6):
77
+ """
78
+ MistralRMSNorm is equivalent to T5LayerNorm
79
+ """
80
+ super().__init__()
81
+ self.weight = nn.Parameter(torch.ones(hidden_size))
82
+ self.variance_epsilon = eps
83
+
84
+ def forward(self, hidden_states):
85
+ input_dtype = hidden_states.dtype
86
+ hidden_states = hidden_states.to(torch.float32)
87
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
88
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
89
+ return self.weight * hidden_states.to(input_dtype)
90
+
91
+
92
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
93
+ class MistralRotaryEmbedding(nn.Module):
94
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
95
+ super().__init__()
96
+
97
+ self.dim = dim
98
+ self.max_position_embeddings = max_position_embeddings
99
+ self.base = base
100
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
101
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
102
+
103
+ # Build here to make `torch.jit.trace` work.
104
+ self._set_cos_sin_cache(
105
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
106
+ )
107
+
108
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
109
+ self.max_seq_len_cached = seq_len
110
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
111
+
112
+ freqs = torch.outer(t, self.inv_freq)
113
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
114
+ emb = torch.cat((freqs, freqs), dim=-1)
115
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
116
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
117
+
118
+ def forward(self, x, seq_len=None):
119
+ # x: [bs, num_attention_heads, seq_len, head_size]
120
+ if seq_len > self.max_seq_len_cached:
121
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
122
+
123
+ return (
124
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
125
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
126
+ )
127
+
128
+
129
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
130
+ def rotate_half(x):
131
+ """Rotates half the hidden dims of the input."""
132
+ x1 = x[..., : x.shape[-1] // 2]
133
+ x2 = x[..., x.shape[-1] // 2 :]
134
+ return torch.cat((-x2, x1), dim=-1)
135
+
136
+
137
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
138
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
139
+ """Applies Rotary Position Embedding to the query and key tensors.
140
+
141
+ Args:
142
+ q (`torch.Tensor`): The query tensor.
143
+ k (`torch.Tensor`): The key tensor.
144
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
145
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
146
+ position_ids (`torch.Tensor`):
147
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
148
+ used to pass offsetted position ids when working with a KV-cache.
149
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
150
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
151
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
152
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
153
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
154
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
155
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
156
+ Returns:
157
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
158
+ """
159
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
160
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
161
+ q_embed = (q * cos) + (rotate_half(q) * sin)
162
+ k_embed = (k * cos) + (rotate_half(k) * sin)
163
+ return q_embed, k_embed
164
+
165
+
166
+ class FeedForward(nn.Module):
167
+ def __init__(
168
+ self,
169
+ config
170
+ ):
171
+ """
172
+ Initialize the FeedForward module.
173
+
174
+ Args:
175
+ dim (int): Input dimension.
176
+ hidden_dim (int): Hidden dimension of the feedforward layer.
177
+ multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
178
+ ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
179
+
180
+ Attributes:
181
+ w1 (ColumnParallelLinear): Linear transformation for the first layer.
182
+ w2 (RowParallelLinear): Linear transformation for the second layer.
183
+ w3 (ColumnParallelLinear): Linear transformation for the third layer.
184
+
185
+ """
186
+ super().__init__()
187
+
188
+ self.w1 = nn.Linear(
189
+ config.hidden_size, config.intermediate_size, bias=False
190
+ )
191
+ self.w2 = nn.Linear(
192
+ config.intermediate_size, config.hidden_size, bias=False
193
+ )
194
+ self.w3 = nn.Linear(
195
+ config.hidden_size, config.intermediate_size, bias=False
196
+ )
197
+
198
+ def forward(self, x):
199
+ device = x.device
200
+ x = x.to(self.w1.weight.device)
201
+ return self.w2(F.silu(self.w1(x)) * self.w3(x)).to(device)
202
+
203
+
204
+ class MoE(nn.Module):
205
+ def __init__(
206
+ self,
207
+ config,
208
+ ):
209
+ super().__init__()
210
+ self.config = config
211
+ num_experts = config.num_experts
212
+ self.experts = nn.ModuleList([FeedForward(config) for i in range(num_experts)])
213
+ self.gate = nn.Linear(config.hidden_size, num_experts, bias=False)
214
+ self.num_experts_per_token = config.num_experts_per_token
215
+
216
+ def forward(self, x):
217
+ orig_shape = x.shape
218
+ x = x.view(-1, x.shape[-1])
219
+
220
+ scores = self.gate(x).softmax(dim=-1)
221
+ expert_weights, expert_indices = torch.topk(scores, self.num_experts_per_token, dim=-1)
222
+ flat_expert_indices = expert_indices.view(-1)
223
+
224
+ x = x.repeat_interleave(self.num_experts_per_token, dim=0)
225
+ y = torch.empty_like(x)
226
+ for i, expert in enumerate(self.experts):
227
+ y[flat_expert_indices == i] = expert(x[flat_expert_indices == i])
228
+ y = (y.view(*expert_weights.shape, -1) * expert_weights.unsqueeze(-1)).sum(dim=1)
229
+ return y.view(*orig_shape)
230
+
231
+
232
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
233
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
234
+ """
235
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
236
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
237
+ """
238
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
239
+ if n_rep == 1:
240
+ return hidden_states
241
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
242
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
243
+
244
+
245
+ class MistralAttention(nn.Module):
246
+ """
247
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
248
+ and "Generating Long Sequences with Sparse Transformers".
249
+ """
250
+
251
+ def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None):
252
+ super().__init__()
253
+ self.config = config
254
+ self.layer_idx = layer_idx
255
+ if layer_idx is None:
256
+ logger.warning_once(
257
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
258
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
259
+ "when creating this class."
260
+ )
261
+
262
+ self.hidden_size = config.hidden_size
263
+ self.num_heads = config.num_attention_heads
264
+ self.head_dim = self.hidden_size // self.num_heads
265
+ self.num_key_value_heads = config.num_key_value_heads
266
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
267
+ self.max_position_embeddings = config.max_position_embeddings
268
+ self.rope_theta = config.rope_theta
269
+ self.is_causal = True
270
+ self.attention_dropout = config.attention_dropout
271
+
272
+ if (self.head_dim * self.num_heads) != self.hidden_size:
273
+ raise ValueError(
274
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
275
+ f" and `num_heads`: {self.num_heads})."
276
+ )
277
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
278
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
279
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
280
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
281
+
282
+ self.rotary_emb = MistralRotaryEmbedding(
283
+ self.head_dim,
284
+ max_position_embeddings=self.max_position_embeddings,
285
+ base=self.rope_theta,
286
+ )
287
+
288
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
289
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
290
+
291
+ def forward(
292
+ self,
293
+ hidden_states: torch.Tensor,
294
+ attention_mask: Optional[torch.Tensor] = None,
295
+ position_ids: Optional[torch.LongTensor] = None,
296
+ past_key_value: Optional[Cache] = None,
297
+ output_attentions: bool = False,
298
+ use_cache: bool = False,
299
+ **kwargs,
300
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
301
+ if "padding_mask" in kwargs:
302
+ warnings.warn(
303
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
304
+ )
305
+ bsz, q_len, _ = hidden_states.size()
306
+
307
+ query_states = self.q_proj(hidden_states)
308
+ key_states = self.k_proj(hidden_states)
309
+ value_states = self.v_proj(hidden_states)
310
+
311
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
312
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
313
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
314
+
315
+ kv_seq_len = key_states.shape[-2]
316
+ if past_key_value is not None:
317
+ if self.layer_idx is None:
318
+ raise ValueError(
319
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
320
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
321
+ "with a layer index."
322
+ )
323
+ kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
324
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
325
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
326
+
327
+ if past_key_value is not None:
328
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
329
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
330
+
331
+ # repeat k/v heads if n_kv_heads < n_heads
332
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
333
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
334
+
335
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
336
+
337
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
338
+ raise ValueError(
339
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
340
+ f" {attn_weights.size()}"
341
+ )
342
+
343
+ if attention_mask is not None:
344
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
345
+ raise ValueError(
346
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
347
+ )
348
+
349
+ attn_weights = attn_weights + attention_mask
350
+
351
+ # upcast attention to fp32
352
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
353
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
354
+ attn_output = torch.matmul(attn_weights, value_states)
355
+
356
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
357
+ raise ValueError(
358
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
359
+ f" {attn_output.size()}"
360
+ )
361
+
362
+ attn_output = attn_output.transpose(1, 2).contiguous()
363
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
364
+
365
+ attn_output = self.o_proj(attn_output)
366
+
367
+ if not output_attentions:
368
+ attn_weights = None
369
+
370
+ return attn_output, attn_weights, past_key_value
371
+
372
+
373
+ class MistralFlashAttention2(MistralAttention):
374
+ """
375
+ Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
376
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
377
+ flash attention and deal with padding tokens in case the input contains any of them.
378
+ """
379
+
380
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
381
+ def __init__(self, *args, **kwargs):
382
+ super().__init__(*args, **kwargs)
383
+
384
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
385
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
386
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
387
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
388
+
389
+ def forward(
390
+ self,
391
+ hidden_states: torch.Tensor,
392
+ attention_mask: Optional[torch.Tensor] = None,
393
+ position_ids: Optional[torch.LongTensor] = None,
394
+ past_key_value: Optional[Cache] = None,
395
+ output_attentions: bool = False,
396
+ use_cache: bool = False,
397
+ **kwargs,
398
+ ):
399
+ if "padding_mask" in kwargs:
400
+ warnings.warn(
401
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
402
+ )
403
+
404
+ # overwrite attention_mask with padding_mask
405
+ attention_mask = kwargs.pop("padding_mask")
406
+ bsz, q_len, _ = hidden_states.size()
407
+
408
+ query_states = self.q_proj(hidden_states)
409
+ key_states = self.k_proj(hidden_states)
410
+ value_states = self.v_proj(hidden_states)
411
+
412
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
413
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
414
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
415
+
416
+ kv_seq_len = key_states.shape[-2]
417
+ if past_key_value is not None:
418
+ kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
419
+
420
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
421
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
422
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
423
+
424
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
425
+
426
+ use_sliding_windows = (
427
+ _flash_supports_window_size
428
+ and getattr(self.config, "sliding_window", None) is not None
429
+ and kv_seq_len > self.config.sliding_window
430
+ )
431
+
432
+ if not _flash_supports_window_size:
433
+ logger.warning_once(
434
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
435
+ " make sure to upgrade flash-attn library."
436
+ )
437
+
438
+ if past_key_value is not None:
439
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
440
+ if getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window:
441
+ slicing_tokens = 1 - self.config.sliding_window
442
+
443
+ past_key = past_key_value[0]
444
+ past_value = past_key_value[1]
445
+
446
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
447
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
448
+
449
+ if past_key.shape[-2] != self.config.sliding_window - 1:
450
+ raise ValueError(
451
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
452
+ f" {past_key.shape}"
453
+ )
454
+
455
+ past_key_value = (past_key, past_value)
456
+
457
+ if attention_mask is not None:
458
+ attention_mask = attention_mask[:, slicing_tokens:]
459
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
460
+
461
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
462
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
463
+
464
+ # repeat k/v heads if n_kv_heads < n_heads
465
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
466
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
467
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
468
+
469
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
470
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
471
+ # cast them back in float16 just to be sure everything works as expected.
472
+ input_dtype = query_states.dtype
473
+ if input_dtype == torch.float32:
474
+ # Handle the case where the model is quantized
475
+ if hasattr(self.config, "_pre_quantization_dtype"):
476
+ target_dtype = self.config._pre_quantization_dtype
477
+ else:
478
+ target_dtype = self.q_proj.weight.dtype
479
+
480
+ logger.warning_once(
481
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
482
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
483
+ f" {target_dtype}."
484
+ )
485
+
486
+ query_states = query_states.to(target_dtype)
487
+ key_states = key_states.to(target_dtype)
488
+ value_states = value_states.to(target_dtype)
489
+
490
+ # Reashape to the expected shape for Flash Attention
491
+ query_states = query_states.transpose(1, 2)
492
+ key_states = key_states.transpose(1, 2)
493
+ value_states = value_states.transpose(1, 2)
494
+
495
+ attn_output = self._flash_attention_forward(
496
+ query_states,
497
+ key_states,
498
+ value_states,
499
+ attention_mask,
500
+ q_len,
501
+ dropout=dropout_rate,
502
+ use_sliding_windows=use_sliding_windows,
503
+ )
504
+
505
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
506
+ attn_output = self.o_proj(attn_output)
507
+
508
+ if not output_attentions:
509
+ attn_weights = None
510
+
511
+ return attn_output, attn_weights, past_key_value
512
+
513
+ def _flash_attention_forward(
514
+ self,
515
+ query_states,
516
+ key_states,
517
+ value_states,
518
+ attention_mask,
519
+ query_length,
520
+ dropout=0.0,
521
+ softmax_scale=None,
522
+ use_sliding_windows=False,
523
+ ):
524
+ """
525
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
526
+ first unpad the input, then computes the attention scores and pad the final attention scores.
527
+
528
+ Args:
529
+ query_states (`torch.Tensor`):
530
+ Input query states to be passed to Flash Attention API
531
+ key_states (`torch.Tensor`):
532
+ Input key states to be passed to Flash Attention API
533
+ value_states (`torch.Tensor`):
534
+ Input value states to be passed to Flash Attention API
535
+ attention_mask (`torch.Tensor`):
536
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
537
+ position of padding tokens and 1 for the position of non-padding tokens.
538
+ dropout (`int`, *optional*):
539
+ Attention dropout
540
+ softmax_scale (`float`, *optional*):
541
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
542
+ use_sliding_windows (`bool`, *optional*):
543
+ Whether to activate sliding window attention.
544
+ """
545
+ if not self._flash_attn_uses_top_left_mask:
546
+ causal = self.is_causal
547
+ else:
548
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
549
+ causal = self.is_causal and query_length != 1
550
+
551
+ # Contains at least one padding token in the sequence
552
+ if attention_mask is not None:
553
+ batch_size = query_states.shape[0]
554
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
555
+ query_states, key_states, value_states, attention_mask, query_length
556
+ )
557
+
558
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
559
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
560
+
561
+ if not use_sliding_windows:
562
+ attn_output_unpad = flash_attn_varlen_func(
563
+ query_states,
564
+ key_states,
565
+ value_states,
566
+ cu_seqlens_q=cu_seqlens_q,
567
+ cu_seqlens_k=cu_seqlens_k,
568
+ max_seqlen_q=max_seqlen_in_batch_q,
569
+ max_seqlen_k=max_seqlen_in_batch_k,
570
+ dropout_p=dropout,
571
+ softmax_scale=softmax_scale,
572
+ causal=causal,
573
+ )
574
+ else:
575
+ attn_output_unpad = flash_attn_varlen_func(
576
+ query_states,
577
+ key_states,
578
+ value_states,
579
+ cu_seqlens_q=cu_seqlens_q,
580
+ cu_seqlens_k=cu_seqlens_k,
581
+ max_seqlen_q=max_seqlen_in_batch_q,
582
+ max_seqlen_k=max_seqlen_in_batch_k,
583
+ dropout_p=dropout,
584
+ softmax_scale=softmax_scale,
585
+ causal=causal,
586
+ window_size=(self.config.sliding_window, self.config.sliding_window),
587
+ )
588
+
589
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
590
+ else:
591
+ if not use_sliding_windows:
592
+ attn_output = flash_attn_func(
593
+ query_states,
594
+ key_states,
595
+ value_states,
596
+ dropout,
597
+ softmax_scale=softmax_scale,
598
+ causal=causal,
599
+ )
600
+ else:
601
+ attn_output = flash_attn_func(
602
+ query_states,
603
+ key_states,
604
+ value_states,
605
+ dropout,
606
+ softmax_scale=softmax_scale,
607
+ causal=causal,
608
+ window_size=(self.config.sliding_window, self.config.sliding_window),
609
+ )
610
+
611
+ return attn_output
612
+
613
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
614
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
615
+
616
+ # On the first iteration we need to properly re-create the padding mask
617
+ # by slicing it on the proper place
618
+ if kv_seq_len != attention_mask.shape[-1]:
619
+ attention_mask_num_tokens = attention_mask.shape[-1]
620
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
621
+
622
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
623
+
624
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
625
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
626
+
627
+ if query_length == kv_seq_len:
628
+ query_layer = index_first_axis(
629
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
630
+ )
631
+ cu_seqlens_q = cu_seqlens_k
632
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
633
+ indices_q = indices_k
634
+ elif query_length == 1:
635
+ max_seqlen_in_batch_q = 1
636
+ cu_seqlens_q = torch.arange(
637
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
638
+ ) # There is a memcpy here, that is very bad.
639
+ indices_q = cu_seqlens_q[:-1]
640
+ query_layer = query_layer.squeeze(1)
641
+ else:
642
+ # The -q_len: slice assumes left padding.
643
+ attention_mask = attention_mask[:, -query_length:]
644
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
645
+
646
+ return (
647
+ query_layer,
648
+ key_layer,
649
+ value_layer,
650
+ indices_q,
651
+ (cu_seqlens_q, cu_seqlens_k),
652
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
653
+ )
654
+
655
+
656
+ class MistralDecoderLayer(nn.Module):
657
+ def __init__(self, config: MixtralConfig, layer_idx: int):
658
+ super().__init__()
659
+ self.hidden_size = config.hidden_size
660
+ self.self_attn = (
661
+ MistralAttention(config=config, layer_idx=layer_idx)
662
+ if not getattr(config, "_flash_attn_2_enabled", False)
663
+ else MistralFlashAttention2(config, layer_idx=layer_idx)
664
+ )
665
+ self.mlp = MoE(config)
666
+ self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
667
+ self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
668
+
669
+ def forward(
670
+ self,
671
+ hidden_states: torch.Tensor,
672
+ attention_mask: Optional[torch.Tensor] = None,
673
+ position_ids: Optional[torch.LongTensor] = None,
674
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
675
+ output_attentions: Optional[bool] = False,
676
+ use_cache: Optional[bool] = False,
677
+ **kwargs,
678
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
679
+ if "padding_mask" in kwargs:
680
+ warnings.warn(
681
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
682
+ )
683
+ """
684
+ Args:
685
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
686
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
687
+ `(batch, sequence_length)` where padding elements are indicated by 0.
688
+ output_attentions (`bool`, *optional*):
689
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
690
+ returned tensors for more detail.
691
+ use_cache (`bool`, *optional*):
692
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
693
+ (see `past_key_values`).
694
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
695
+ """
696
+
697
+ residual = hidden_states
698
+
699
+ hidden_states = self.input_layernorm(hidden_states)
700
+
701
+ # Self Attention
702
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
703
+ hidden_states=hidden_states,
704
+ attention_mask=attention_mask,
705
+ position_ids=position_ids,
706
+ past_key_value=past_key_value,
707
+ output_attentions=output_attentions,
708
+ use_cache=use_cache,
709
+ )
710
+ hidden_states = residual + hidden_states
711
+
712
+ # Fully Connected
713
+ residual = hidden_states
714
+ hidden_states = self.post_attention_layernorm(hidden_states)
715
+ hidden_states = self.mlp(hidden_states)
716
+ hidden_states = residual + hidden_states
717
+
718
+ outputs = (hidden_states,)
719
+
720
+ if output_attentions:
721
+ outputs += (self_attn_weights,)
722
+
723
+ if use_cache:
724
+ outputs += (present_key_value,)
725
+
726
+ return outputs
727
+
728
+
729
+ MISTRAL_START_DOCSTRING = r"""
730
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
731
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
732
+ etc.)
733
+
734
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
735
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
736
+ and behavior.
737
+
738
+ Parameters:
739
+ config ([`MixtralConfig`]):
740
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
741
+ load the weights associated with the model, only the configuration. Check out the
742
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
743
+ """
744
+
745
+
746
+ @add_start_docstrings(
747
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
748
+ MISTRAL_START_DOCSTRING,
749
+ )
750
+ class MistralPreTrainedModel(PreTrainedModel):
751
+ config_class = MixtralConfig
752
+ base_model_prefix = "model"
753
+ supports_gradient_checkpointing = True
754
+ _no_split_modules = ["MistralDecoderLayer"]
755
+ _skip_keys_device_placement = "past_key_values"
756
+ _supports_flash_attn_2 = True
757
+ _supports_cache_class = True
758
+
759
+ def _init_weights(self, module):
760
+ std = self.config.initializer_range
761
+ if isinstance(module, nn.Linear):
762
+ module.weight.data.normal_(mean=0.0, std=std)
763
+ if module.bias is not None:
764
+ module.bias.data.zero_()
765
+ elif isinstance(module, nn.Embedding):
766
+ module.weight.data.normal_(mean=0.0, std=std)
767
+ if module.padding_idx is not None:
768
+ module.weight.data[module.padding_idx].zero_()
769
+
770
+
771
+ MISTRAL_INPUTS_DOCSTRING = r"""
772
+ Args:
773
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
774
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
775
+ it.
776
+
777
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
778
+ [`PreTrainedTokenizer.__call__`] for details.
779
+
780
+ [What are input IDs?](../glossary#input-ids)
781
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
782
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
783
+
784
+ - 1 for tokens that are **not masked**,
785
+ - 0 for tokens that are **masked**.
786
+
787
+ [What are attention masks?](../glossary#attention-mask)
788
+
789
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
790
+ [`PreTrainedTokenizer.__call__`] for details.
791
+
792
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
793
+ `past_key_values`).
794
+
795
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
796
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
797
+ information on the default strategy.
798
+
799
+ - 1 indicates the head is **not masked**,
800
+ - 0 indicates the head is **masked**.
801
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
802
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
803
+ config.n_positions - 1]`.
804
+
805
+ [What are position IDs?](../glossary#position-ids)
806
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
807
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
808
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
809
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
810
+
811
+ Two formats are allowed:
812
+ - a [`~cache_utils.Cache`] instance;
813
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
814
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
815
+ cache format.
816
+
817
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
818
+ legacy cache format will be returned.
819
+
820
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
821
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
822
+ of shape `(batch_size, sequence_length)`.
823
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
824
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
825
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
826
+ model's internal embedding lookup matrix.
827
+ use_cache (`bool`, *optional*):
828
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
829
+ `past_key_values`).
830
+ output_attentions (`bool`, *optional*):
831
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
832
+ tensors for more detail.
833
+ output_hidden_states (`bool`, *optional*):
834
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
835
+ more detail.
836
+ return_dict (`bool`, *optional*):
837
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
838
+ """
839
+
840
+
841
+ @add_start_docstrings(
842
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
843
+ MISTRAL_START_DOCSTRING,
844
+ )
845
+ class MistralModel(MistralPreTrainedModel):
846
+ """
847
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
848
+
849
+ Args:
850
+ config: MixtralConfig
851
+ """
852
+
853
+ def __init__(self, config: MixtralConfig):
854
+ super().__init__(config)
855
+ self.padding_idx = config.pad_token_id
856
+ self.vocab_size = config.vocab_size
857
+
858
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
859
+ self.layers = nn.ModuleList(
860
+ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
861
+ )
862
+ self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
863
+
864
+ self.gradient_checkpointing = False
865
+ # Initialize weights and apply final processing
866
+ self.post_init()
867
+
868
+ def get_input_embeddings(self):
869
+ return self.embed_tokens
870
+
871
+ def set_input_embeddings(self, value):
872
+ self.embed_tokens = value
873
+
874
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
875
+ def forward(
876
+ self,
877
+ input_ids: torch.LongTensor = None,
878
+ attention_mask: Optional[torch.Tensor] = None,
879
+ position_ids: Optional[torch.LongTensor] = None,
880
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
881
+ inputs_embeds: Optional[torch.FloatTensor] = None,
882
+ use_cache: Optional[bool] = None,
883
+ output_attentions: Optional[bool] = None,
884
+ output_hidden_states: Optional[bool] = None,
885
+ return_dict: Optional[bool] = None,
886
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
887
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
888
+ output_hidden_states = (
889
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
890
+ )
891
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
892
+
893
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
894
+
895
+ # retrieve input_ids and inputs_embeds
896
+ if input_ids is not None and inputs_embeds is not None:
897
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
898
+ elif input_ids is not None:
899
+ batch_size, seq_length = input_ids.shape
900
+ elif inputs_embeds is not None:
901
+ batch_size, seq_length, _ = inputs_embeds.shape
902
+ else:
903
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
904
+
905
+ seq_length_with_past = seq_length
906
+ past_key_values_length = 0
907
+
908
+ if use_cache:
909
+ use_legacy_cache = not isinstance(past_key_values, Cache)
910
+ if use_legacy_cache:
911
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
912
+ past_key_values_length = past_key_values.get_seq_length()
913
+ seq_length_with_past = seq_length_with_past + past_key_values_length
914
+
915
+ if position_ids is None:
916
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
917
+ position_ids = torch.arange(
918
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
919
+ )
920
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
921
+ else:
922
+ position_ids = position_ids.view(-1, seq_length).long()
923
+
924
+ if inputs_embeds is None:
925
+ inputs_embeds = self.embed_tokens(input_ids)
926
+
927
+ if (
928
+ attention_mask is not None
929
+ and hasattr(self.config, "_flash_attn_2_enabled")
930
+ and self.config._flash_attn_2_enabled
931
+ and use_cache
932
+ ):
933
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
934
+ if is_padding_right:
935
+ raise ValueError(
936
+ "You are attempting to perform batched generation with padding_side='right'"
937
+ " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
938
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
939
+ )
940
+
941
+ if getattr(self.config, "_flash_attn_2_enabled", False):
942
+ # 2d mask is passed through the layers
943
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
944
+ else:
945
+ # 4d mask is passed through the layers
946
+ attention_mask = _prepare_4d_causal_attention_mask(
947
+ attention_mask,
948
+ (batch_size, seq_length),
949
+ inputs_embeds,
950
+ past_key_values_length
951
+ )
952
+
953
+ hidden_states = inputs_embeds
954
+
955
+ if self.gradient_checkpointing and self.training:
956
+ if use_cache:
957
+ logger.warning_once(
958
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
959
+ )
960
+ use_cache = False
961
+
962
+ # decoder layers
963
+ all_hidden_states = () if output_hidden_states else None
964
+ all_self_attns = () if output_attentions else None
965
+ next_decoder_cache = None
966
+
967
+ for decoder_layer in self.layers:
968
+ if output_hidden_states:
969
+ all_hidden_states += (hidden_states,)
970
+
971
+ if self.gradient_checkpointing and self.training:
972
+ layer_outputs = self._gradient_checkpointing_func(
973
+ decoder_layer.__call__,
974
+ hidden_states,
975
+ attention_mask,
976
+ position_ids,
977
+ past_key_values,
978
+ output_attentions,
979
+ use_cache,
980
+ )
981
+ else:
982
+ layer_outputs = decoder_layer(
983
+ hidden_states,
984
+ attention_mask=attention_mask,
985
+ position_ids=position_ids,
986
+ past_key_value=past_key_values,
987
+ output_attentions=output_attentions,
988
+ use_cache=use_cache,
989
+ )
990
+
991
+ hidden_states = layer_outputs[0]
992
+
993
+ if use_cache:
994
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
995
+
996
+ if output_attentions:
997
+ all_self_attns += (layer_outputs[1],)
998
+
999
+ hidden_states = self.norm(hidden_states)
1000
+
1001
+ # add hidden states from the last decoder layer
1002
+ if output_hidden_states:
1003
+ all_hidden_states += (hidden_states,)
1004
+
1005
+ next_cache = None
1006
+ if use_cache:
1007
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1008
+
1009
+ if not return_dict:
1010
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1011
+ return BaseModelOutputWithPast(
1012
+ last_hidden_state=hidden_states,
1013
+ past_key_values=next_cache,
1014
+ hidden_states=all_hidden_states,
1015
+ attentions=all_self_attns,
1016
+ )
1017
+
1018
+
1019
+ class MixtralForCausalLM(MistralPreTrainedModel):
1020
+ _tied_weights_keys = ["lm_head.weight"]
1021
+
1022
+ def __init__(self, config):
1023
+ super().__init__(config)
1024
+ self.model = MistralModel(config)
1025
+ self.vocab_size = config.vocab_size
1026
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1027
+
1028
+ # Initialize weights and apply final processing
1029
+ self.post_init()
1030
+
1031
+ def get_input_embeddings(self):
1032
+ return self.model.embed_tokens
1033
+
1034
+ def set_input_embeddings(self, value):
1035
+ self.model.embed_tokens = value
1036
+
1037
+ def get_output_embeddings(self):
1038
+ return self.lm_head
1039
+
1040
+ def set_output_embeddings(self, new_embeddings):
1041
+ self.lm_head = new_embeddings
1042
+
1043
+ def set_decoder(self, decoder):
1044
+ self.model = decoder
1045
+
1046
+ def get_decoder(self):
1047
+ return self.model
1048
+
1049
+ def _init_weights(self, module):
1050
+ return
1051
+
1052
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1053
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1054
+ def forward(
1055
+ self,
1056
+ input_ids: torch.LongTensor = None,
1057
+ attention_mask: Optional[torch.Tensor] = None,
1058
+ position_ids: Optional[torch.LongTensor] = None,
1059
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1060
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1061
+ labels: Optional[torch.LongTensor] = None,
1062
+ use_cache: Optional[bool] = None,
1063
+ output_attentions: Optional[bool] = None,
1064
+ output_hidden_states: Optional[bool] = None,
1065
+ return_dict: Optional[bool] = None,
1066
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1067
+ r"""
1068
+ Args:
1069
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1070
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1071
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1072
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1073
+
1074
+ Returns:
1075
+
1076
+ Example:
1077
+
1078
+ ```python
1079
+ >>> from transformers import AutoTokenizer, MistralForCausalLM
1080
+
1081
+ >>> model = MistralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1082
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1083
+
1084
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1085
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1086
+
1087
+ >>> # Generate
1088
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1089
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1090
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1091
+ ```"""
1092
+
1093
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1094
+ output_hidden_states = (
1095
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1096
+ )
1097
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1098
+
1099
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1100
+ outputs = self.model(
1101
+ input_ids=input_ids,
1102
+ attention_mask=attention_mask,
1103
+ position_ids=position_ids,
1104
+ past_key_values=past_key_values,
1105
+ inputs_embeds=inputs_embeds,
1106
+ use_cache=use_cache,
1107
+ output_attentions=output_attentions,
1108
+ output_hidden_states=output_hidden_states,
1109
+ return_dict=return_dict,
1110
+ )
1111
+
1112
+ hidden_states = outputs[0]
1113
+ logits = self.lm_head(hidden_states)
1114
+ logits = logits.float()
1115
+
1116
+ loss = None
1117
+ if labels is not None:
1118
+ # Shift so that tokens < n predict n
1119
+ shift_logits = logits[..., :-1, :].contiguous()
1120
+ shift_labels = labels[..., 1:].contiguous()
1121
+ # Flatten the tokens
1122
+ loss_fct = CrossEntropyLoss()
1123
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1124
+ shift_labels = shift_labels.view(-1)
1125
+ # Enable model parallelism
1126
+ shift_labels = shift_labels.to(shift_logits.device)
1127
+ loss = loss_fct(shift_logits, shift_labels)
1128
+
1129
+ if not return_dict:
1130
+ output = (logits,) + outputs[1:]
1131
+ return (loss,) + output if loss is not None else output
1132
+
1133
+ return CausalLMOutputWithPast(
1134
+ loss=loss,
1135
+ logits=logits,
1136
+ past_key_values=outputs.past_key_values,
1137
+ hidden_states=outputs.hidden_states,
1138
+ attentions=outputs.attentions,
1139
+ )
1140
+
1141
+ def prepare_inputs_for_generation(
1142
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1143
+ ):
1144
+ # Omit tokens covered by past_key_values
1145
+ if past_key_values is not None:
1146
+ if isinstance(past_key_values, Cache):
1147
+ cache_length = past_key_values.get_seq_length()
1148
+ past_length = past_key_values.seen_tokens
1149
+ else:
1150
+ cache_length = past_length = past_key_values[0][0].shape[2]
1151
+
1152
+ # Keep only the unprocessed tokens:
1153
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1154
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1155
+ # input)
1156
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1157
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1158
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1159
+ # input_ids based on the past_length.
1160
+ elif past_length < input_ids.shape[1]:
1161
+ input_ids = input_ids[:, past_length:]
1162
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1163
+
1164
+ # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
1165
+ # older attention values, as their corresponding values are not part of the input.
1166
+ if cache_length < past_length and attention_mask is not None:
1167
+ attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
1168
+
1169
+ position_ids = kwargs.get("position_ids", None)
1170
+ if attention_mask is not None and position_ids is None:
1171
+ # create position_ids on the fly for batch generation
1172
+ position_ids = attention_mask.long().cumsum(-1) - 1
1173
+ position_ids.masked_fill_(attention_mask == 0, 1)
1174
+ if past_key_values:
1175
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1176
+
1177
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1178
+ if inputs_embeds is not None and past_key_values is None:
1179
+ model_inputs = {"inputs_embeds": inputs_embeds}
1180
+ else:
1181
+ model_inputs = {"input_ids": input_ids}
1182
+
1183
+ model_inputs.update(
1184
+ {
1185
+ "position_ids": position_ids,
1186
+ "past_key_values": past_key_values,
1187
+ "use_cache": kwargs.get("use_cache"),
1188
+ "attention_mask": attention_mask,
1189
+ }
1190
+ )
1191
+ return model_inputs
1192
+
1193
+ @staticmethod
1194
+ def _reorder_cache(past_key_values, beam_idx):
1195
+ reordered_past = ()
1196
+ for layer_past in past_key_values:
1197
+ reordered_past += (
1198
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1199
+ )
1200
+ return reordered_past
1201
+
1202
+
1203
+ @add_start_docstrings(
1204
+ """
1205
+ The Mistral Model transformer with a sequence classification head on top (linear layer).
1206
+
1207
+ [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1208
+ (e.g. GPT-2) do.
1209
+
1210
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1211
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1212
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1213
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1214
+ each row of the batch).
1215
+ """,
1216
+ MISTRAL_START_DOCSTRING,
1217
+ )
1218
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL
1219
+ class MistralForSequenceClassification(MistralPreTrainedModel):
1220
+ def __init__(self, config):
1221
+ super().__init__(config)
1222
+ self.num_labels = config.num_labels
1223
+ self.model = MistralModel(config)
1224
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1225
+
1226
+ # Initialize weights and apply final processing
1227
+ self.post_init()
1228
+
1229
+ def get_input_embeddings(self):
1230
+ return self.model.embed_tokens
1231
+
1232
+ def set_input_embeddings(self, value):
1233
+ self.model.embed_tokens = value
1234
+
1235
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1236
+ def forward(
1237
+ self,
1238
+ input_ids: torch.LongTensor = None,
1239
+ attention_mask: Optional[torch.Tensor] = None,
1240
+ position_ids: Optional[torch.LongTensor] = None,
1241
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1242
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1243
+ labels: Optional[torch.LongTensor] = None,
1244
+ use_cache: Optional[bool] = None,
1245
+ output_attentions: Optional[bool] = None,
1246
+ output_hidden_states: Optional[bool] = None,
1247
+ return_dict: Optional[bool] = None,
1248
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1249
+ r"""
1250
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1251
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1252
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1253
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1254
+ """
1255
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1256
+
1257
+ transformer_outputs = self.model(
1258
+ input_ids,
1259
+ attention_mask=attention_mask,
1260
+ position_ids=position_ids,
1261
+ past_key_values=past_key_values,
1262
+ inputs_embeds=inputs_embeds,
1263
+ use_cache=use_cache,
1264
+ output_attentions=output_attentions,
1265
+ output_hidden_states=output_hidden_states,
1266
+ return_dict=return_dict,
1267
+ )
1268
+ hidden_states = transformer_outputs[0]
1269
+ logits = self.score(hidden_states)
1270
+
1271
+ if input_ids is not None:
1272
+ batch_size = input_ids.shape[0]
1273
+ else:
1274
+ batch_size = inputs_embeds.shape[0]
1275
+
1276
+ if self.config.pad_token_id is None and batch_size != 1:
1277
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1278
+ if self.config.pad_token_id is None:
1279
+ sequence_lengths = -1
1280
+ else:
1281
+ if input_ids is not None:
1282
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1283
+ logits.device
1284
+ )
1285
+ else:
1286
+ sequence_lengths = -1
1287
+
1288
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1289
+
1290
+ loss = None
1291
+ if labels is not None:
1292
+ labels = labels.to(logits.device)
1293
+ if self.config.problem_type is None:
1294
+ if self.num_labels == 1:
1295
+ self.config.problem_type = "regression"
1296
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1297
+ self.config.problem_type = "single_label_classification"
1298
+ else:
1299
+ self.config.problem_type = "multi_label_classification"
1300
+
1301
+ if self.config.problem_type == "regression":
1302
+ loss_fct = MSELoss()
1303
+ if self.num_labels == 1:
1304
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1305
+ else:
1306
+ loss = loss_fct(pooled_logits, labels)
1307
+ elif self.config.problem_type == "single_label_classification":
1308
+ loss_fct = CrossEntropyLoss()
1309
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1310
+ elif self.config.problem_type == "multi_label_classification":
1311
+ loss_fct = BCEWithLogitsLoss()
1312
+ loss = loss_fct(pooled_logits, labels)
1313
+ if not return_dict:
1314
+ output = (pooled_logits,) + transformer_outputs[1:]
1315
+ return ((loss,) + output) if loss is not None else output
1316
+
1317
+ return SequenceClassifierOutputWithPast(
1318
+ loss=loss,
1319
+ logits=pooled_logits,
1320
+ past_key_values=transformer_outputs.past_key_values,
1321
+ hidden_states=transformer_outputs.hidden_states,
1322
+ attentions=transformer_outputs.attentions,
1323
+ )