File size: 8,085 Bytes
d30dab6 bdd8ab0 55d1190 bdd8ab0 55d1190 bdd8ab0 9698642 d30dab6 987c25c d30dab6 e75e09c d30dab6 86e75e4 d30dab6 86e75e4 d30dab6 7f0b78a d30dab6 e3ae76a d30dab6 e3ae76a d30dab6 eab4b0c d30dab6 95a9f0b d30dab6 7f0b78a d30dab6 36de141 d30dab6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
---
pipeline_tag: text-to-image
license: other
license_name: faipl-1.0-sd
license_link: LICENSE
base_model: stabilityai/stable-cascade
tags:
- text-to-image
- anime
library_name: diffusers
language: en
inference: false
decoder: Disty0/sotediffusion-wuerstchen3-decoder
new_version: Disty0/sotediffusion-v2
---
# New verison is available: https://huggingface.co/Disty0/sotediffusion-v2
# SoteDiffusion Wuerstchen3
Anime finetune of Würstchen V3.
# Release Notes
- This release is sponsored by <a href="https://fal.ai/grants?rel=sote-diffusion" target="_blank">fal.ai/grants</a>
- Trained on 6M images for 3 epochs using 8x A100 80G GPUs.
# API Usage
This model can be used via API with Fal.AI
For more details: https://fal.ai/models/fal-ai/stable-cascade/sote-diffusion
<style>
.image {
float: left;
margin-left: 10px;
}
</style>
<table>
<img class="image" src="https://cdn-uploads.huggingface.co/production/uploads/6456af6195082f722d178522/9NmbUy1iaenscVLqCt7dA.png" width="320">
<img class="image" src="https://cdn-uploads.huggingface.co/production/uploads/6456af6195082f722d178522/78vAZc1-Ed1LhBst7HAa5.png" width="320">
</table>
# UI Guide
## SD.Next
URL: https://github.com/vladmandic/automatic/
Go to Models -> Huggingface and type `Disty0/sotediffusion-wuerstchen3-decoder` into the model name and press download.
Load `Disty0/sotediffusion-wuerstchen3-decoder` after the download process is complete.
Prompt:
```
newest, extremely aesthetic, best quality,
```
Negative Prompt:
```
very displeasing, worst quality, monochrome, realistic, oldest, loli,
```
Parameters:
Sampler: Default
Steps: 30 or 40
Refiner Steps: 10
CFG: 7
Secondary CFG: 2 or 1
Resolution: 1024x1536, 2048x1152
Anything works as long as it's a multiply of 128.
## ComfyUI
Please refer to CivitAI: https://civitai.com/models/353284
# Code Example
```shell
pip install diffusers
```
```python
import torch
from diffusers import StableCascadeCombinedPipeline
device = "cuda"
dtype = torch.bfloat16 # or torch.float16
model = "Disty0/sotediffusion-wuerstchen3-decoder"
pipe = StableCascadeCombinedPipeline.from_pretrained(model, torch_dtype=dtype)
# send everything to the gpu:
pipe = pipe.to(device, dtype=dtype)
pipe.prior_pipe = pipe.prior_pipe.to(device, dtype=dtype)
# or enable model offload to save vram:
# pipe.enable_model_cpu_offload()
prompt = "newest, extremely aesthetic, best quality, 1girl, solo, cat ears, pink hair, orange eyes, long hair, bare shoulders, looking at viewer, smile, indoors, casual, living room, playing guitar,"
negative_prompt = "very displeasing, worst quality, monochrome, realistic, oldest, loli,"
output = pipe(
width=1024,
height=1536,
prompt=prompt,
negative_prompt=negative_prompt,
decoder_guidance_scale=2.0,
prior_guidance_scale=7.0,
prior_num_inference_steps=30,
output_type="pil",
num_inference_steps=10
).images[0]
## do something with the output image
```
## Training:
**Software used**: Kohya SD-Scripts with Stable Cascade branch.
https://github.com/kohya-ss/sd-scripts/tree/stable-cascade
**GPU used**: 8x Nvidia A100 80GB
**GPU Hours**: 220
### Base
| parameter | value |
|---|---|
| **amp** | bf16 |
| **weights** | fp32 |
| **save weights** | fp16 |
| **resolution** | 1024x1024 |
| **effective batch size** | 128 |
| **unet learning rate** | 1e-5 |
| **te learning rate** | 4e-6 |
| **optimizer** | Adafactor |
| **images** | 6M |
| **epochs** | 3 |
### Final
| parameter | value |
|---|---|
| **amp** | bf16 |
| **weights** | fp32 |
| **save weights** | fp16 |
| **resolution** | 1024x1024 |
| **effective batch size** | 128 |
| **unet learning rate** | 4e-6 |
| **te learning rate** | none |
| **optimizer** | Adafactor |
| **images** | 120K |
| **epochs** | 16 |
## Dataset:
**GPU used for captioning**: 1x Intel ARC A770 16GB
**GPU Hours**: 350
**Model used for captioning**: SmilingWolf/wd-swinv2-tagger-v3
**Model used for text**: llava-hf/llava-1.5-7b-hf
**Command:**
```
python /mnt/DataSSD/AI/Apps/kohya_ss/sd-scripts/finetune/tag_images_by_wd14_tagger.py --model_dir "/mnt/DataSSD/AI/models/wd14_tagger_model" --repo_id "SmilingWolf/wd-swinv2-tagger-v3" --recursive --remove_underscore --use_rating_tags --character_tags_first --character_tag_expand --append_tags --onnx --caption_separator ", " --general_threshold 0.35 --character_threshold 0.50 --batch_size 4 --caption_extension ".txt" ./
```
| dataset name | total images |
|---|---|
| **newest** | 1.848.331 |
| **recent** | 1.380.630 |
| **mid** | 993.227 |
| **early** | 566.152 |
| **oldest** | 160.397 |
| **pixiv** | 343.614 |
| **visual novel cg** | 231.358 |
| **anime wallpaper** | 104.790 |
| **Total** | 5.628.499 |
**Note**:
- Smallest size is 1280x600 | 768.000 pixels
- Deduped based on image similarity using czkawka-cli
- Around 120K very high quality images got intentionally duplicated 5 times, making the total image count 6.2M
## Tags:
Model is trained with random tag order but this is the order in the dataset if you are interested:
```
aesthetic tags, quality tags, date tags, custom tags, rating tags, character, series, rest of the tags
```
### Date:
| tag | date |
|---|---|
| **newest** | 2022 to 2024 |
| **recent** | 2019 to 2021 |
| **mid** | 2015 to 2018 |
| **early** | 2011 to 2014 |
| **oldest** | 2005 to 2010 |
### Aesthetic Tags:
**Model used**: shadowlilac/aesthetic-shadow-v2
| score greater than | tag | count |
|---|---|---|
| **0.90** | extremely aesthetic | 125.451 |
| **0.80** | very aesthetic | 887.382 |
| **0.70** | aesthetic | 1.049.857 |
| **0.50** | slightly aesthetic | 1.643.091 |
| **0.40** | not displeasing | 569.543 |
| **0.30** | not aesthetic | 445.188 |
| **0.20** | slightly displeasing | 341.424 |
| **0.10** | displeasing | 237.660 |
| **rest of them** | very displeasing | 328.712 |
### Quality Tags:
**Model used**: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth
| score greater than | tag | count |
|---|---|---|
| **0.980** | best quality | 1.270.447 |
| **0.900** | high quality | 498.244 |
| **0.750** | great quality | 351.006 |
| **0.500** | medium quality | 366.448 |
| **0.250** | normal quality | 368.380 |
| **0.125** | bad quality | 279.050 |
| **0.025** | low quality | 538.958 |
| **rest of them** | worst quality | 1.955.966 |
## Rating Tags:
| tag | count |
|---|---|
| **general** | 1.416.451 |
| **sensitive** | 3.447.664 |
| **nsfw** | 427.459 |
| **explicit nsfw** | 336.925 |
## Custom Tags:
| dataset name | custom tag |
|---|---|
| **image boards** | date, |
| **text** | The text says "text", |
| **characters** | character, series
| **pixiv** | art by Display_Name, |
| **visual novel cg** | Full_VN_Name (short_3_letter_name), visual novel cg, |
| **anime wallpaper** | date, anime wallpaper, |
## Limitations and Bias
### Bias
- This model is intended for anime illustrations.
Realistic capabilites are not tested at all.
### Limitations
- Can fall back to realistic.
Add "realistic" tag to the negatives when this happens.
- Far shot eyes and hands can be bad.
## License
SoteDiffusion models falls under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) license, which is compatible with Stable Diffusion models’ license. Key points:
1. **Modification Sharing:** If you modify SoteDiffusion models, you must share both your changes and the original license.
2. **Source Code Accessibility:** If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.
3. **Distribution Terms:** Any distribution must be under this license or another with similar rules.
4. **Compliance:** Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.
**Notes**: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license which is named as LICENSE_INHERIT.
|