File size: 8,085 Bytes
d30dab6
 
 
 
 
bdd8ab0
55d1190
 
bdd8ab0
 
 
55d1190
bdd8ab0
9698642
d30dab6
 
 
987c25c
 
 
d30dab6
 
 
 
 
 
e75e09c
 
d30dab6
86e75e4
 
 
 
 
d30dab6
 
 
 
 
 
 
 
86e75e4
 
d30dab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0b78a
 
d30dab6
 
 
 
 
 
 
 
 
e3ae76a
d30dab6
e3ae76a
d30dab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eab4b0c
 
d30dab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95a9f0b
d30dab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0b78a
d30dab6
 
 
 
 
 
 
 
 
 
 
 
 
36de141
d30dab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
---
pipeline_tag: text-to-image
license: other
license_name: faipl-1.0-sd
license_link: LICENSE
base_model: stabilityai/stable-cascade
tags:
- text-to-image
- anime
library_name: diffusers
language: en
inference: false
decoder: Disty0/sotediffusion-wuerstchen3-decoder
new_version: Disty0/sotediffusion-v2
---


# New verison is available: https://huggingface.co/Disty0/sotediffusion-v2


# SoteDiffusion Wuerstchen3

Anime finetune of Würstchen V3.  

# Release Notes

- This release is sponsored by <a href="https://fal.ai/grants?rel=sote-diffusion" target="_blank">fal.ai/grants</a>  
- Trained on 6M images for 3 epochs using 8x A100 80G GPUs.  

# API Usage

This model can be used via API with Fal.AI  
For more details: https://fal.ai/models/fal-ai/stable-cascade/sote-diffusion  

<style>
.image {
    float: left;
    margin-left: 10px;
}
</style>

<table>
<img class="image" src="https://cdn-uploads.huggingface.co/production/uploads/6456af6195082f722d178522/9NmbUy1iaenscVLqCt7dA.png" width="320">
<img class="image" src="https://cdn-uploads.huggingface.co/production/uploads/6456af6195082f722d178522/78vAZc1-Ed1LhBst7HAa5.png" width="320">
</table>

# UI Guide

## SD.Next
URL: https://github.com/vladmandic/automatic/

Go to Models -> Huggingface and type `Disty0/sotediffusion-wuerstchen3-decoder` into the model name and press download.  
Load `Disty0/sotediffusion-wuerstchen3-decoder` after the download process is complete.  

Prompt:  
```
newest, extremely aesthetic, best quality,
```

Negative Prompt:  
```
very displeasing, worst quality, monochrome, realistic, oldest, loli,
```

Parameters:  
Sampler: Default  

Steps: 30 or 40  
Refiner Steps: 10  

CFG: 7  
Secondary CFG: 2 or 1  

Resolution: 1024x1536, 2048x1152  
Anything works as long as it's a multiply of 128.


## ComfyUI

Please refer to CivitAI: https://civitai.com/models/353284  


# Code Example

```shell
pip install diffusers
```

```python
import torch
from diffusers import StableCascadeCombinedPipeline

device = "cuda"
dtype = torch.bfloat16 # or torch.float16
model = "Disty0/sotediffusion-wuerstchen3-decoder"

pipe = StableCascadeCombinedPipeline.from_pretrained(model, torch_dtype=dtype)

# send everything to the gpu:
pipe = pipe.to(device, dtype=dtype)
pipe.prior_pipe = pipe.prior_pipe.to(device, dtype=dtype)

# or enable model offload to save vram:
# pipe.enable_model_cpu_offload()



prompt = "newest, extremely aesthetic, best quality, 1girl, solo, cat ears, pink hair, orange eyes, long hair, bare shoulders, looking at viewer, smile, indoors, casual, living room, playing guitar,"
negative_prompt = "very displeasing, worst quality, monochrome, realistic, oldest, loli,"
output = pipe(
    width=1024,
    height=1536,
    prompt=prompt,
    negative_prompt=negative_prompt,
    decoder_guidance_scale=2.0,
    prior_guidance_scale=7.0,
    prior_num_inference_steps=30,
    output_type="pil",
    num_inference_steps=10
).images[0]

## do something with the output image
```

## Training:
**Software used**: Kohya SD-Scripts with Stable Cascade branch.  
https://github.com/kohya-ss/sd-scripts/tree/stable-cascade   

**GPU used**: 8x Nvidia A100 80GB  
**GPU Hours**: 220  

### Base
| parameter | value |
|---|---|
| **amp** | bf16 |
| **weights** | fp32 |
| **save weights** | fp16 |
| **resolution** | 1024x1024 |
| **effective batch size** | 128 |
| **unet learning rate** | 1e-5 |
| **te learning rate** | 4e-6 |
| **optimizer** | Adafactor |
| **images** | 6M |
| **epochs** | 3 |

### Final

| parameter | value |
|---|---|
| **amp** | bf16 |
| **weights** | fp32 |
| **save weights** | fp16 |
| **resolution** | 1024x1024 |
| **effective batch size** | 128 |
| **unet learning rate** |  4e-6 |
| **te learning rate** | none |
| **optimizer** | Adafactor |
| **images** | 120K |
| **epochs** | 16 |

## Dataset:

**GPU used for captioning**: 1x Intel ARC A770 16GB  
**GPU Hours**: 350  

**Model used for captioning**: SmilingWolf/wd-swinv2-tagger-v3  
**Model used for text**: llava-hf/llava-1.5-7b-hf

**Command:**  
```
python /mnt/DataSSD/AI/Apps/kohya_ss/sd-scripts/finetune/tag_images_by_wd14_tagger.py --model_dir "/mnt/DataSSD/AI/models/wd14_tagger_model" --repo_id "SmilingWolf/wd-swinv2-tagger-v3" --recursive --remove_underscore --use_rating_tags --character_tags_first --character_tag_expand --append_tags --onnx --caption_separator ", " --general_threshold 0.35 --character_threshold 0.50 --batch_size 4 --caption_extension ".txt" ./
```


| dataset name | total images |
|---|---|
| **newest** | 1.848.331 |
| **recent** | 1.380.630 |
| **mid** | 993.227 |
| **early** | 566.152 |
| **oldest** | 160.397 |
| **pixiv** | 343.614 |
| **visual novel cg** | 231.358 |
| **anime wallpaper** | 104.790 |
| **Total** | 5.628.499 |


**Note**:  
 - Smallest size is 1280x600 | 768.000 pixels
 - Deduped based on image similarity using czkawka-cli
 - Around 120K very high quality images got intentionally duplicated 5 times, making the total image count 6.2M


## Tags:

Model is trained with random tag order but this is the order in the dataset if you are interested:  
```
aesthetic tags, quality tags, date tags, custom tags, rating tags, character, series, rest of the tags
```

### Date:

| tag | date |
|---|---|
| **newest** | 2022 to 2024 |
| **recent** | 2019 to 2021 |
| **mid** | 2015 to 2018 |
| **early** | 2011 to 2014 |
| **oldest** | 2005 to 2010 |

### Aesthetic Tags:
**Model used**: shadowlilac/aesthetic-shadow-v2

| score greater than | tag | count |
|---|---|---|
| **0.90** | extremely aesthetic | 125.451 |
| **0.80** | very aesthetic | 887.382 |
| **0.70** | aesthetic | 1.049.857 |
| **0.50** | slightly aesthetic | 1.643.091 |
| **0.40** | not displeasing | 569.543 |
| **0.30** | not aesthetic | 445.188 |
| **0.20** | slightly displeasing | 341.424 |
| **0.10** | displeasing | 237.660 |
| **rest of them** | very displeasing | 328.712 |

### Quality Tags:
**Model used**: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth

| score greater than | tag | count |
|---|---|---|
| **0.980** | best quality | 1.270.447 |
| **0.900** | high quality | 498.244 |
| **0.750** | great quality | 351.006 |
| **0.500** | medium quality | 366.448 |
| **0.250** | normal quality | 368.380 |
| **0.125** | bad quality | 279.050 |
| **0.025** | low quality | 538.958 |
| **rest of them** | worst quality | 1.955.966 |

## Rating Tags:

| tag | count |
|---|---|
| **general** | 1.416.451 |
| **sensitive** | 3.447.664 |
| **nsfw** | 427.459 |
| **explicit nsfw** | 336.925 |

## Custom Tags:

| dataset name | custom tag |
|---|---|
| **image boards** | date, |
| **text** | The text says "text", |
| **characters** | character, series
| **pixiv** | art by Display_Name, |
| **visual novel cg** | Full_VN_Name (short_3_letter_name), visual novel cg, |
| **anime wallpaper** | date, anime wallpaper, |


## Limitations and Bias

### Bias

- This model is intended for anime illustrations.  
  Realistic capabilites are not tested at all.  

### Limitations

- Can fall back to realistic.  
  Add "realistic" tag to the negatives when this happens.  
- Far shot eyes and hands can be bad.  


## License

SoteDiffusion models falls under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) license, which is compatible with Stable Diffusion models’ license. Key points:

1. **Modification Sharing:** If you modify SoteDiffusion models, you must share both your changes and the original license.
2. **Source Code Accessibility:** If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.
3. **Distribution Terms:** Any distribution must be under this license or another with similar rules.
4. **Compliance:** Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.

**Notes**: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license which is named as LICENSE_INHERIT.