DrishtiSharma
commited on
Commit
·
5c7af26
1
Parent(s):
9108753
End of training
Browse files- README.md +73 -0
- all_results.json +17 -0
- eval_results.json +17 -0
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-large-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: bert-large-uncased-Hate_Offensive_or_Normal_Speech
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# bert-large-uncased-Hate_Offensive_or_Normal_Speech
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0610
|
21 |
+
- Accuracy: 0.9853
|
22 |
+
- Weighted f1: 0.9853
|
23 |
+
- Weighted recall: 0.9853
|
24 |
+
- Weighted precision: 0.9854
|
25 |
+
- Micro f1: 0.9853
|
26 |
+
- Micro recall: 0.9853
|
27 |
+
- Micro precision: 0.9853
|
28 |
+
- Macro f1: 0.9851
|
29 |
+
- Macro recall: 0.9850
|
30 |
+
- Macro precision: 0.9853
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 2e-05
|
50 |
+
- train_batch_size: 16
|
51 |
+
- eval_batch_size: 16
|
52 |
+
- seed: 42
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 5
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Weighted recall | Weighted precision | Micro f1 | Micro recall | Micro precision | Macro f1 | Macro recall | Macro precision |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:---------------:|:------------------:|:--------:|:------------:|:---------------:|:--------:|:------------:|:---------------:|
|
61 |
+
| 0.2927 | 1.0 | 153 | 0.1163 | 0.9462 | 0.9469 | 0.9462 | 0.9512 | 0.9462 | 0.9462 | 0.9462 | 0.9429 | 0.9472 | 0.9427 |
|
62 |
+
| 0.066 | 2.0 | 306 | 0.1119 | 0.9739 | 0.9739 | 0.9739 | 0.9741 | 0.9739 | 0.9739 | 0.9739 | 0.9729 | 0.9742 | 0.9718 |
|
63 |
+
| 0.0267 | 3.0 | 459 | 0.0805 | 0.9821 | 0.9821 | 0.9821 | 0.9825 | 0.9821 | 0.9821 | 0.9821 | 0.9804 | 0.9815 | 0.9796 |
|
64 |
+
| 0.0209 | 4.0 | 612 | 0.0610 | 0.9853 | 0.9853 | 0.9853 | 0.9854 | 0.9853 | 0.9853 | 0.9853 | 0.9851 | 0.9850 | 0.9853 |
|
65 |
+
| 0.0097 | 5.0 | 765 | 0.0673 | 0.9837 | 0.9836 | 0.9837 | 0.9838 | 0.9837 | 0.9837 | 0.9837 | 0.9832 | 0.9833 | 0.9833 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.34.0.dev0
|
71 |
+
- Pytorch 2.0.1+cu118
|
72 |
+
- Datasets 2.14.6.dev0
|
73 |
+
- Tokenizers 0.13.3
|
all_results.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_Macro F1": 0.9850968829506508,
|
4 |
+
"eval_Macro Precision": 0.9852965717423573,
|
5 |
+
"eval_Macro Recall": 0.9850027245943126,
|
6 |
+
"eval_Micro F1": 0.9853181076672104,
|
7 |
+
"eval_Micro Precision": 0.9853181076672104,
|
8 |
+
"eval_Micro Recall": 0.9853181076672104,
|
9 |
+
"eval_Weighted F1": 0.9852885515921976,
|
10 |
+
"eval_Weighted Precision": 0.985358447807592,
|
11 |
+
"eval_Weighted Recall": 0.9853181076672104,
|
12 |
+
"eval_accuracy": 0.9853181076672104,
|
13 |
+
"eval_loss": 0.061004869639873505,
|
14 |
+
"eval_runtime": 8.2476,
|
15 |
+
"eval_samples_per_second": 74.325,
|
16 |
+
"eval_steps_per_second": 4.729
|
17 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_Macro F1": 0.9850968829506508,
|
4 |
+
"eval_Macro Precision": 0.9852965717423573,
|
5 |
+
"eval_Macro Recall": 0.9850027245943126,
|
6 |
+
"eval_Micro F1": 0.9853181076672104,
|
7 |
+
"eval_Micro Precision": 0.9853181076672104,
|
8 |
+
"eval_Micro Recall": 0.9853181076672104,
|
9 |
+
"eval_Weighted F1": 0.9852885515921976,
|
10 |
+
"eval_Weighted Precision": 0.985358447807592,
|
11 |
+
"eval_Weighted Recall": 0.9853181076672104,
|
12 |
+
"eval_accuracy": 0.9853181076672104,
|
13 |
+
"eval_loss": 0.061004869639873505,
|
14 |
+
"eval_runtime": 8.2476,
|
15 |
+
"eval_samples_per_second": 74.325,
|
16 |
+
"eval_steps_per_second": 4.729
|
17 |
+
}
|