DrishtiSharma commited on
Commit
5c7af26
·
1 Parent(s): 9108753

End of training

Browse files
Files changed (3) hide show
  1. README.md +73 -0
  2. all_results.json +17 -0
  3. eval_results.json +17 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-large-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: bert-large-uncased-Hate_Offensive_or_Normal_Speech
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # bert-large-uncased-Hate_Offensive_or_Normal_Speech
17
+
18
+ This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0610
21
+ - Accuracy: 0.9853
22
+ - Weighted f1: 0.9853
23
+ - Weighted recall: 0.9853
24
+ - Weighted precision: 0.9854
25
+ - Micro f1: 0.9853
26
+ - Micro recall: 0.9853
27
+ - Micro precision: 0.9853
28
+ - Macro f1: 0.9851
29
+ - Macro recall: 0.9850
30
+ - Macro precision: 0.9853
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 2e-05
50
+ - train_batch_size: 16
51
+ - eval_batch_size: 16
52
+ - seed: 42
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 5
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Weighted recall | Weighted precision | Micro f1 | Micro recall | Micro precision | Macro f1 | Macro recall | Macro precision |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:---------------:|:------------------:|:--------:|:------------:|:---------------:|:--------:|:------------:|:---------------:|
61
+ | 0.2927 | 1.0 | 153 | 0.1163 | 0.9462 | 0.9469 | 0.9462 | 0.9512 | 0.9462 | 0.9462 | 0.9462 | 0.9429 | 0.9472 | 0.9427 |
62
+ | 0.066 | 2.0 | 306 | 0.1119 | 0.9739 | 0.9739 | 0.9739 | 0.9741 | 0.9739 | 0.9739 | 0.9739 | 0.9729 | 0.9742 | 0.9718 |
63
+ | 0.0267 | 3.0 | 459 | 0.0805 | 0.9821 | 0.9821 | 0.9821 | 0.9825 | 0.9821 | 0.9821 | 0.9821 | 0.9804 | 0.9815 | 0.9796 |
64
+ | 0.0209 | 4.0 | 612 | 0.0610 | 0.9853 | 0.9853 | 0.9853 | 0.9854 | 0.9853 | 0.9853 | 0.9853 | 0.9851 | 0.9850 | 0.9853 |
65
+ | 0.0097 | 5.0 | 765 | 0.0673 | 0.9837 | 0.9836 | 0.9837 | 0.9838 | 0.9837 | 0.9837 | 0.9837 | 0.9832 | 0.9833 | 0.9833 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.34.0.dev0
71
+ - Pytorch 2.0.1+cu118
72
+ - Datasets 2.14.6.dev0
73
+ - Tokenizers 0.13.3
all_results.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_Macro F1": 0.9850968829506508,
4
+ "eval_Macro Precision": 0.9852965717423573,
5
+ "eval_Macro Recall": 0.9850027245943126,
6
+ "eval_Micro F1": 0.9853181076672104,
7
+ "eval_Micro Precision": 0.9853181076672104,
8
+ "eval_Micro Recall": 0.9853181076672104,
9
+ "eval_Weighted F1": 0.9852885515921976,
10
+ "eval_Weighted Precision": 0.985358447807592,
11
+ "eval_Weighted Recall": 0.9853181076672104,
12
+ "eval_accuracy": 0.9853181076672104,
13
+ "eval_loss": 0.061004869639873505,
14
+ "eval_runtime": 8.2476,
15
+ "eval_samples_per_second": 74.325,
16
+ "eval_steps_per_second": 4.729
17
+ }
eval_results.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_Macro F1": 0.9850968829506508,
4
+ "eval_Macro Precision": 0.9852965717423573,
5
+ "eval_Macro Recall": 0.9850027245943126,
6
+ "eval_Micro F1": 0.9853181076672104,
7
+ "eval_Micro Precision": 0.9853181076672104,
8
+ "eval_Micro Recall": 0.9853181076672104,
9
+ "eval_Weighted F1": 0.9852885515921976,
10
+ "eval_Weighted Precision": 0.985358447807592,
11
+ "eval_Weighted Recall": 0.9853181076672104,
12
+ "eval_accuracy": 0.9853181076672104,
13
+ "eval_loss": 0.061004869639873505,
14
+ "eval_runtime": 8.2476,
15
+ "eval_samples_per_second": 74.325,
16
+ "eval_steps_per_second": 4.729
17
+ }