File size: 6,740 Bytes
9340a85
16e981f
 
9340a85
 
16e981f
 
9340a85
16e981f
 
 
9340a85
 
 
 
16e981f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9340a85
 
 
 
 
 
 
16e981f
9340a85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
language:
- myv
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- myv
- robust-speech-event
- model_for_talk
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-myv-v1
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: myv
    metrics:
       - name: Test WER
         type: wer
         value: 0.599548532731377
       - name: Test CER
         type: cer
         value: 0.12953851902597
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-myv-v1

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MYV dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8537
- Wer: 0.6160

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.000222
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 19.453        | 1.92   | 50   | 16.4001         | 1.0    |
| 9.6875        | 3.85   | 100  | 5.4468          | 1.0    |
| 4.9988        | 5.77   | 150  | 4.3507          | 1.0    |
| 4.1148        | 7.69   | 200  | 3.6753          | 1.0    |
| 3.4922        | 9.62   | 250  | 3.3103          | 1.0    |
| 3.2443        | 11.54  | 300  | 3.1741          | 1.0    |
| 3.164         | 13.46  | 350  | 3.1346          | 1.0    |
| 3.0954        | 15.38  | 400  | 3.0428          | 1.0    |
| 3.0076        | 17.31  | 450  | 2.9137          | 1.0    |
| 2.6883        | 19.23  | 500  | 2.1476          | 0.9978 |
| 1.5124        | 21.15  | 550  | 0.8955          | 0.8225 |
| 0.8711        | 23.08  | 600  | 0.6948          | 0.7591 |
| 0.6695        | 25.0   | 650  | 0.6683          | 0.7636 |
| 0.5606        | 26.92  | 700  | 0.6821          | 0.7435 |
| 0.503         | 28.85  | 750  | 0.7220          | 0.7516 |
| 0.4528        | 30.77  | 800  | 0.6638          | 0.7324 |
| 0.4219        | 32.69  | 850  | 0.7120          | 0.7435 |
| 0.4109        | 34.62  | 900  | 0.7122          | 0.7511 |
| 0.3887        | 36.54  | 950  | 0.7179          | 0.7199 |
| 0.3895        | 38.46  | 1000 | 0.7322          | 0.7525 |
| 0.391         | 40.38  | 1050 | 0.6850          | 0.7364 |
| 0.3537        | 42.31  | 1100 | 0.7571          | 0.7279 |
| 0.3267        | 44.23  | 1150 | 0.7575          | 0.7257 |
| 0.3195        | 46.15  | 1200 | 0.7580          | 0.6998 |
| 0.2891        | 48.08  | 1250 | 0.7452          | 0.7101 |
| 0.294         | 50.0   | 1300 | 0.7316          | 0.6945 |
| 0.2854        | 51.92  | 1350 | 0.7241          | 0.6757 |
| 0.2801        | 53.85  | 1400 | 0.7532          | 0.6887 |
| 0.2502        | 55.77  | 1450 | 0.7587          | 0.6811 |
| 0.2427        | 57.69  | 1500 | 0.7231          | 0.6851 |
| 0.2311        | 59.62  | 1550 | 0.7288          | 0.6632 |
| 0.2176        | 61.54  | 1600 | 0.7711          | 0.6664 |
| 0.2117        | 63.46  | 1650 | 0.7914          | 0.6940 |
| 0.2114        | 65.38  | 1700 | 0.8065          | 0.6918 |
| 0.1913        | 67.31  | 1750 | 0.8372          | 0.6945 |
| 0.1897        | 69.23  | 1800 | 0.8051          | 0.6869 |
| 0.1865        | 71.15  | 1850 | 0.8076          | 0.6740 |
| 0.1844        | 73.08  | 1900 | 0.7935          | 0.6708 |
| 0.1757        | 75.0   | 1950 | 0.8015          | 0.6610 |
| 0.1636        | 76.92  | 2000 | 0.7614          | 0.6414 |
| 0.1637        | 78.85  | 2050 | 0.8123          | 0.6592 |
| 0.1599        | 80.77  | 2100 | 0.7907          | 0.6566 |
| 0.1498        | 82.69  | 2150 | 0.8641          | 0.6757 |
| 0.1545        | 84.62  | 2200 | 0.7438          | 0.6682 |
| 0.1433        | 86.54  | 2250 | 0.8014          | 0.6624 |
| 0.1427        | 88.46  | 2300 | 0.7758          | 0.6646 |
| 0.1423        | 90.38  | 2350 | 0.7741          | 0.6423 |
| 0.1298        | 92.31  | 2400 | 0.7938          | 0.6414 |
| 0.1111        | 94.23  | 2450 | 0.7976          | 0.6467 |
| 0.1243        | 96.15  | 2500 | 0.7916          | 0.6481 |
| 0.1215        | 98.08  | 2550 | 0.7594          | 0.6392 |
| 0.113         | 100.0  | 2600 | 0.8236          | 0.6392 |
| 0.1077        | 101.92 | 2650 | 0.7959          | 0.6347 |
| 0.0988        | 103.85 | 2700 | 0.8189          | 0.6392 |
| 0.0953        | 105.77 | 2750 | 0.8157          | 0.6414 |
| 0.0889        | 107.69 | 2800 | 0.7946          | 0.6369 |
| 0.0929        | 109.62 | 2850 | 0.8255          | 0.6360 |
| 0.0822        | 111.54 | 2900 | 0.8320          | 0.6334 |
| 0.086         | 113.46 | 2950 | 0.8539          | 0.6490 |
| 0.0825        | 115.38 | 3000 | 0.8438          | 0.6418 |
| 0.0727        | 117.31 | 3050 | 0.8568          | 0.6481 |
| 0.0717        | 119.23 | 3100 | 0.8447          | 0.6512 |
| 0.0815        | 121.15 | 3150 | 0.8470          | 0.6445 |
| 0.0689        | 123.08 | 3200 | 0.8264          | 0.6249 |
| 0.0726        | 125.0  | 3250 | 0.7981          | 0.6169 |
| 0.0648        | 126.92 | 3300 | 0.8237          | 0.6200 |
| 0.0632        | 128.85 | 3350 | 0.8416          | 0.6249 |
| 0.06          | 130.77 | 3400 | 0.8276          | 0.6173 |
| 0.0616        | 132.69 | 3450 | 0.8429          | 0.6209 |
| 0.0614        | 134.62 | 3500 | 0.8485          | 0.6271 |
| 0.0539        | 136.54 | 3550 | 0.8598          | 0.6218 |
| 0.0555        | 138.46 | 3600 | 0.8557          | 0.6169 |
| 0.0604        | 140.38 | 3650 | 0.8436          | 0.6186 |
| 0.0556        | 142.31 | 3700 | 0.8428          | 0.6178 |
| 0.051         | 144.23 | 3750 | 0.8440          | 0.6142 |
| 0.0526        | 146.15 | 3800 | 0.8566          | 0.6142 |
| 0.052         | 148.08 | 3850 | 0.8544          | 0.6178 |
| 0.0519        | 150.0  | 3900 | 0.8537          | 0.6160 |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0