DunnBC22 commited on
Commit
365a64b
1 Parent(s): 9253a0e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -8
README.md CHANGED
@@ -3,34 +3,38 @@ license: apache-2.0
3
  base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
 
6
  metrics:
7
  - accuracy
8
  model-index:
9
  - name: bert-base-uncased-Vitamin_C_Fact_Verification
10
  results: []
 
 
 
 
 
11
  ---
12
 
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
  # bert-base-uncased-Vitamin_C_Fact_Verification
17
 
18
- This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
 
19
  It achieves the following results on the evaluation set:
20
  - Loss: 0.6329
21
  - Accuracy: 0.7240
22
 
23
  ## Model description
24
 
25
- More information needed
26
 
27
  ## Intended uses & limitations
28
 
29
- More information needed
30
 
31
  ## Training and evaluation data
32
 
33
- More information needed
34
 
35
  ## Training procedure
36
 
@@ -58,4 +62,4 @@ The following hyperparameters were used during training:
58
  - Transformers 4.31.0
59
  - Pytorch 2.0.1+cu118
60
  - Datasets 2.14.2
61
- - Tokenizers 0.13.3
 
3
  base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
+ - multiple_choice
7
  metrics:
8
  - accuracy
9
  model-index:
10
  - name: bert-base-uncased-Vitamin_C_Fact_Verification
11
  results: []
12
+ datasets:
13
+ - tasksource/bigbench
14
+ language:
15
+ - en
16
+ pipeline_tag: question-answering
17
  ---
18
 
 
 
 
19
  # bert-base-uncased-Vitamin_C_Fact_Verification
20
 
21
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased).
22
+
23
  It achieves the following results on the evaluation set:
24
  - Loss: 0.6329
25
  - Accuracy: 0.7240
26
 
27
  ## Model description
28
 
29
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Multiple%20Choice/Vitamin%20C%20Fact%20Verification/Vitamin_C_Fact_Verification_Multiple_Choice_Using_BERT.ipynb
30
 
31
  ## Intended uses & limitations
32
 
33
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
34
 
35
  ## Training and evaluation data
36
 
37
+ Dataset Source: https://huggingface.co/datasets/tasksource/bigbench/viewer/vitaminc_fact_verification
38
 
39
  ## Training procedure
40
 
 
62
  - Transformers 4.31.0
63
  - Pytorch 2.0.1+cu118
64
  - Datasets 2.14.2
65
+ - Tokenizers 0.13.3