File size: 12,665 Bytes
74b1bac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import os
import time
from typing import List
from qdrant_client import QdrantClient, models
from langchain_core.documents import Document
from semantic_cache.main import SemanticCache
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from Router.router import Evaluator
from langchain_openai import ChatOpenAI
# from utils.pipelines.main import get_last_user_message, add_or_update_system_message, pop_system_message
from blueprints.rag_utils import format_docs, translate
from blueprints.prompts import QUERY_PROMPT, evaluator_intent, basic_template, chitchat_prompt, safe_prompt, cache_prompt
from SafetyChecker import SafetyChecker
from langchain.retrievers import EnsembleRetriever
from BM25 import BM25SRetriever
# from database_Routing import DB_Router
from langchain.retrievers.multi_query import MultiQueryRetriever
# import cohere
from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain_core.output_parsers import StrOutputParser
from langchain_core.output_parsers import BaseOutputParser
# from langchain_cohere import CohereRerank
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain_groq import ChatGroq
from langchain_core.runnables import RunnablePassthrough
import time
from qdrant_client import QdrantClient
from langchain_community.vectorstores import Qdrant
from langchain.retrievers.document_compressors import LLMChainFilter
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.retrievers.document_compressors import LLMListwiseRerank
from dotenv import load_dotenv
from langchain_openai import OpenAIEmbeddings
load_dotenv()
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_KEY')
os.environ["COHERE_API_KEY"]
# HF_EMBEDDING = HuggingFaceEmbeddings(model_name="dangvantuan/vietnamese-embedding")
HF_EMBEDDING = OpenAIEmbeddings(model='text-embedding-3-small', api_key = os.getenv('OPENAI_KEY'))
class LineListOutputParser(BaseOutputParser[List[str]]):
"""Output parser for a list of lines."""
def parse(self, text: str) -> List[str]:
lines = text.strip().split("\n")
return list(filter(None, lines)) # Remove empty lines
def add_or_update_system_message(content: str, messages: List[dict]):
"""
Adds a new system message at the beginning of the messages list
:param msg: The message to be added or appended.
:param messages: The list of message dictionaries.
:return: The updated list of message dictionaries.
"""
if messages and messages[0].get("role") == "system":
messages[0]["content"] += f"{content}\n"
else:
# Insert at the beginning
messages.insert(0, {"role": "system", "content": content})
return messages
def split_context( context):
split_index = context.find("User question")
system_prompt = context[:split_index].strip()
user_question = context[split_index:].strip()
user_split_index = user_question.find("<context>")
f_system_prompt = str(system_prompt) +"\n" + str(user_question[user_split_index:])
return f_system_prompt
def extract_metadata(docs, headers=('Header_1', 'Header_2', 'Header_3')):
meta_data_docs = []
for doc in docs:
meta_data_doc = [doc.metadata[header] for header in headers if doc.metadata.get(header)]
meta_data_docs.append(meta_data_doc)
return meta_data_docs
def search_with_filter(query, vector_store, k, headers):
conditions = []
# Xử lý điều kiện theo số lượng headers
if len(headers) == 1:
conditions.append(
models.FieldCondition(
key="metadata.Header_1",
match=models.MatchValue(
value=headers[0]
),
)
)
elif len(headers) == 2:
conditions.append(
models.FieldCondition(
key="metadata.Header_1",
match=models.MatchValue(
value=headers[0]
),
)
)
conditions.append(
models.FieldCondition(
key="metadata.Header_2",
match=models.MatchValue(
value=headers[1]
),
)
)
elif len(headers) == 3:
conditions.append(
models.FieldCondition(
key="metadata.Header_1",
match=models.MatchValue(
value=headers[0]
),
)
)
conditions.append(
models.FieldCondition(
key="metadata.Header_2",
match=models.MatchValue(
value=headers[1]
),
)
)
conditions.append(
models.FieldCondition(
key="metadata.Header_3",
match=models.MatchValue(
value=headers[2]
),
)
)
# Thực hiện truy vấn với các điều kiện
single_result = vector_store.similarity_search(
query=query,
k=k,
filter=models.Filter(
must=conditions
),
)
return single_result
def get_relevant_documents(documents: List[Document], limit: int) -> List[Document]:
result = []
seen = set()
for doc in documents:
if doc.page_content not in seen:
result.append(doc)
seen.add(doc.page_content)
if len(result) == limit:
break
return result
if __name__ == "__main__":
client = QdrantClient(
url="http://localhost:6333"
)
stsv = Qdrant(client, collection_name="sotaysinhvien_filter", embeddings= HF_EMBEDDING)
stsv_db = stsv.as_retriever(search_kwargs={'k': 10})
gthv = Qdrant(client, collection_name="gioithieuhocvien_filter", embeddings= HF_EMBEDDING)
gthv_db = gthv.as_retriever(search_kwargs={'k': 10})
ttts = Qdrant(client, collection_name="thongtintuyensinh_filter", embeddings= HF_EMBEDDING)
ttts_db = ttts.as_retriever(search_kwargs={'k': 10})
import pickle
with open('data/sotaysinhvien_filter.pkl', 'rb') as f:
sotaysinhvien = pickle.load(f)
with open('data/thongtintuyensinh_filter.pkl', 'rb') as f:
thongtintuyensinh = pickle.load(f)
with open('data/gioithieuhocvien_filter.pkl', 'rb') as f:
gioithieuhocvien = pickle.load(f)
retriever_bm25_tuyensinh = BM25SRetriever.from_documents(thongtintuyensinh, k= 10, save_directory = "data/bm25s/ttts")
retriever_bm25_sotay = BM25SRetriever.from_documents(sotaysinhvien, k= 10, save_directory = "data/bm25s/stsv")
retriever_bm25_hocvien = BM25SRetriever.from_documents(gioithieuhocvien, k= 10, save_directory = "data/bm25s/gthv" )
# reranker = CohereRerank(model = "rerank-multilingual-v3.0", top_n = 5)
llm = ChatGroq(model_name="llama3-70b-8192", temperature=0.1,api_key= os.getenv('llm_api_3'))
llm2 = ChatGroq(model_name="llama-3.1-70b-versatile", temperature=1,api_key= os.getenv('llm_api_8'))
output_parser = LineListOutputParser()
llm_chain = QUERY_PROMPT | llm | output_parser
# messages = [
# {"role": "system", "content": "Dựa vào thông tin sau, trả lời câu hỏi bằng tiếng việt"}
# ]
# ###########################
cache = SemanticCache()
another_chain = ( chitchat_prompt | llm2 | StrOutputParser())
safe_chain = ( safe_prompt | llm2 | StrOutputParser())
cache_chain = ( cache_prompt | llm2 | StrOutputParser())
# def duy_phen():
while 1:
body = {}
user_message = input("Nhập câu hỏi nào!: ")
checker = SafetyChecker()
safety_result = checker.check_safety(translate(user_message))
print("Safety check :" ,safety_result)
if safety_result != 'safe' :
print("UNSAFE")
response = safe_chain.invoke({'meaning': f'{safety_result}'})
print(response)
exit()
evaluator = Evaluator(llm="llama3-70b", prompt=evaluator_intent)
output = evaluator.classify_text(user_message)
print(output.result)
retriever = None # or assign a specific default retriever if applicable
db = None # initialize db as well if it is used later in the code
# print(output.result)
source = None
cache_result =cache.checker(user_message)
if cache_result is not None:
print("###Cache hit!###")
response = cache_chain.invoke({"question": f'{user_message}', "content": f"{cache_result}"})
print(response)
if output and output.result == 'OUT_OF_SCOPE' :
print('OUT OF SCOPE')
# print(body)
response = another_chain.invoke({"question": f"{user_message}"})
print(response)
elif output and output.result == 'ASK_QUYDINH' :
print('SO TAY SINH VIEN DB')
retriever = stsv_db
retriever_bm25 = retriever_bm25_sotay
source = stsv
# db = sotaysinhvien
elif output and output.result == 'ASK_HOCVIEN' :
print('GIOI THIEU HOC VIEN DB')
retriever = gthv_db
retriever_bm25 = retriever_bm25_hocvien
source = gthv
# db = gioithieuhocvien
elif output and output.result == 'ASK_TUYENSINH' :
print('THONG TIN TUYEN SINH DB')
retriever = ttts_db
retriever_bm25 = retriever_bm25_tuyensinh
source = ttts
# db = thongtintuyensinh
if retriever is not None:
# retriever_multi = MultiQueryRetriever(
# retriever=retriever, llm_chain=llm_chain, parser_key="lines"
# )
start_time = time.time()
ensemble_retriever = EnsembleRetriever(
retrievers=[retriever_bm25, retriever], weights=[0.5, 0.5])
# compressor = LLMChainExtractor.from_llm(llm)
# _filter = LLMChainFilter.from_llm(llm)
# embeddings_filter = EmbeddingsFilter(embeddings=HF_EMBEDDING, similarity_threshold=0.5)
# compression = ContextualCompressionRetriever(
# base_compressor=_filter2, base_retriever=ensemble_retriever
# )
reranker = LLMListwiseRerank.from_llm(
llm=llm, top_n=5
)
tailieu = ensemble_retriever.invoke(f"{user_message}")
docs = reranker.compress_documents(tailieu, user_message)
end_time = time.time()
#################### Filter lại ở đây -> add more documents liên quan hơn #########################
# docs = compression.invoke(f"{user_message}")
# print(docs)
meta_data_docs = extract_metadata(docs)
full_result = []
for meta_data_doc in meta_data_docs:
result = search_with_filter(user_message, source, 10, meta_data_doc)
for i in result:
full_result.append(i)
print("Context liên quan" + '\n')
print(full_result)
# rag_chain = (
# {"context": compression | format_docs, "question": RunnablePassthrough()}
# | basic_template | llm2 | StrOutputParser()
# )
result_final = get_relevant_documents(full_result, 10)
context = format_docs(result_final)
best_chain = ( basic_template | llm2 | StrOutputParser())
best_result = best_chain.invoke({"question": f'{user_message}', "context": f"{context}"})
print(f'Câu trả lời tối ưu nhất: {best_result}')
print(f'TIME USING : {end_time -start_time}')
else:
print('Retriever is not defined. Check output results and ensure retriever is assigned correctly.')
# duy_phen()
|