File size: 7,243 Bytes
aeda668 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import re
from collections import defaultdict, namedtuple
from typing import Dict, List, Optional, Set, Tuple
EOS_TYPE = "EOS"
PUNCT_TYPE = "PUNCT"
PLAIN_TYPE = "PLAIN"
Instance = namedtuple('Instance', 'token_type un_normalized normalized')
known_types = [
"PLAIN",
"DATE",
"CARDINAL",
"LETTERS",
"VERBATIM",
"MEASURE",
"DECIMAL",
"ORDINAL",
"DIGIT",
"MONEY",
"TELEPHONE",
"ELECTRONIC",
"FRACTION",
"TIME",
"ADDRESS",
]
def load_kaggle_text_norm_file(file_path: str) -> List[Instance]:
"""
https://www.kaggle.com/richardwilliamsproat/text-normalization-for-english-russian-and-polish
Loads text file in the Kaggle Google text normalization file format: <semiotic class>\t<unnormalized text>\t<`self` if trivial class or normalized text>
E.g.
PLAIN Brillantaisia <self>
PLAIN is <self>
PLAIN a <self>
PLAIN genus <self>
PLAIN of <self>
PLAIN plant <self>
PLAIN in <self>
PLAIN family <self>
PLAIN Acanthaceae <self>
PUNCT . sil
<eos> <eos>
Args:
file_path: file path to text file
Returns: flat list of instances
"""
res = []
with open(file_path, 'r') as fp:
for line in fp:
parts = line.strip().split("\t")
if parts[0] == "<eos>":
res.append(Instance(token_type=EOS_TYPE, un_normalized="", normalized=""))
else:
l_type, l_token, l_normalized = parts
l_token = l_token.lower()
l_normalized = l_normalized.lower()
if l_type == PLAIN_TYPE:
res.append(Instance(token_type=l_type, un_normalized=l_token, normalized=l_token))
elif l_type != PUNCT_TYPE:
res.append(Instance(token_type=l_type, un_normalized=l_token, normalized=l_normalized))
return res
def load_files(file_paths: List[str], load_func=load_kaggle_text_norm_file) -> List[Instance]:
"""
Load given list of text files using the `load_func` function.
Args:
file_paths: list of file paths
load_func: loading function
Returns: flat list of instances
"""
res = []
for file_path in file_paths:
res.extend(load_func(file_path=file_path))
return res
def clean_generic(text: str) -> str:
"""
Cleans text without affecting semiotic classes.
Args:
text: string
Returns: cleaned string
"""
text = text.strip()
text = text.lower()
return text
def evaluate(preds: List[str], labels: List[str], input: Optional[List[str]] = None, verbose: bool = True) -> float:
"""
Evaluates accuracy given predictions and labels.
Args:
preds: predictions
labels: labels
input: optional, only needed for verbosity
verbose: if true prints [input], golden labels and predictions
Returns accuracy
"""
acc = 0
nums = len(preds)
for i in range(nums):
pred_norm = clean_generic(preds[i])
label_norm = clean_generic(labels[i])
if pred_norm == label_norm:
acc = acc + 1
else:
if input:
print(f"inpu: {json.dumps(input[i])}")
print(f"gold: {json.dumps(label_norm)}")
print(f"pred: {json.dumps(pred_norm)}")
return acc / nums
def training_data_to_tokens(
data: List[Instance], category: Optional[str] = None
) -> Dict[str, Tuple[List[str], List[str]]]:
"""
Filters the instance list by category if provided and converts it into a map from token type to list of un_normalized and normalized strings
Args:
data: list of instances
category: optional semiotic class category name
Returns Dict: token type -> (list of un_normalized strings, list of normalized strings)
"""
result = defaultdict(lambda: ([], []))
for instance in data:
if instance.token_type != EOS_TYPE:
if category is None or instance.token_type == category:
result[instance.token_type][0].append(instance.un_normalized)
result[instance.token_type][1].append(instance.normalized)
return result
def training_data_to_sentences(data: List[Instance]) -> Tuple[List[str], List[str], List[Set[str]]]:
"""
Takes instance list, creates list of sentences split by EOS_Token
Args:
data: list of instances
Returns (list of unnormalized sentences, list of normalized sentences, list of sets of categories in a sentence)
"""
# split data at EOS boundaries
sentences = []
sentence = []
categories = []
sentence_categories = set()
for instance in data:
if instance.token_type == EOS_TYPE:
sentences.append(sentence)
sentence = []
categories.append(sentence_categories)
sentence_categories = set()
else:
sentence.append(instance)
sentence_categories.update([instance.token_type])
un_normalized = [" ".join([instance.un_normalized for instance in sentence]) for sentence in sentences]
normalized = [" ".join([instance.normalized for instance in sentence]) for sentence in sentences]
return un_normalized, normalized, categories
def post_process_punctuation(text: str) -> str:
"""
Normalized quotes and spaces
Args:
text: text
Returns: text with normalized spaces and quotes
"""
text = (
text.replace('( ', '(')
.replace(' )', ')')
.replace('{ ', '{')
.replace(' }', '}')
.replace('[ ', '[')
.replace(' ]', ']')
.replace(' ', ' ')
.replace('”', '"')
.replace("’", "'")
.replace("»", '"')
.replace("«", '"')
.replace("\\", "")
.replace("„", '"')
.replace("´", "'")
.replace("’", "'")
.replace('“', '"')
.replace("‘", "'")
.replace('`', "'")
.replace('- -', "--")
)
for punct in "!,.:;?":
text = text.replace(f' {punct}', punct)
return text.strip()
def pre_process(text: str) -> str:
"""
Adds space around punctuation marks
Args:
text: string that may include semiotic classes
Returns: text with spaces around punctuation marks
"""
space_both = '*<=>^[]{}'
for punct in space_both:
text = text.replace(punct, ' ' + punct + ' ')
text = text.replace('--', ' ' + '--' + ' ')
# remove extra space
text = re.sub(r' +', ' ', text)
return text
|