File size: 7,262 Bytes
aeda668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from argparse import ArgumentParser
from time import perf_counter
from typing import List
from difflib import SequenceMatcher

from text_processing.normalize import Normalizer
from text_processing.token_parser import TokenParser


class InverseNormalizer(Normalizer):
    """
    Inverse normalizer that converts text from spoken to written form. Useful for ASR postprocessing.
    Input is expected to have no punctuation outside of approstrophe (') and dash (-) and be lower cased.

    Args:
        lang: language specifying the ITN
        cache_dir: path to a dir with .far grammar file. Set to None to avoid using cache.
        overwrite_cache: set to True to overwrite .far files
    """

    def __init__(self, lang: str = 'en', cache_dir: str = None, overwrite_cache: bool = False):
        if lang == 'vi':
            from text_processing.vi.taggers.tokenize_and_classify import ClassifyFst
            from text_processing.vi.verbalizers.verbalize_final import VerbalizeFinalFst
        else:
            raise NotImplementedError

        self.tagger = ClassifyFst(cache_dir=cache_dir, overwrite_cache=overwrite_cache)
        self.verbalizer = VerbalizeFinalFst()
        self.parser = TokenParser()

    def inverse_normalize_list(self, texts: List[str], verbose=False) -> List[str]:
        """
        NeMo inverse text normalizer

        Args:
            texts: list of input strings
            verbose: whether to print intermediate meta information

        Returns converted list of input strings
        """
        return self.normalize_list(texts=texts, verbose=verbose)

    def inverse_normalize(self, text: str, verbose: bool = False) -> str:
        """
        Main function. Inverse normalizes tokens from spoken to written form
            e.g. twelve kilograms -> 12 kg

        Args:
            text: string that may include semiotic classes
            verbose: whether to print intermediate meta information

        Returns: written form
        """
        chunk_size = 512
        tokens = text.split()
        if len(tokens) <= chunk_size:
            return self.normalize(text=text, verbose=verbose)
        else:
            result = ""
            for i in range(0, len(tokens), chunk_size):
                sub_text = " ".join(tokens[i: i + chunk_size])
                result += self.normalize(text=sub_text, verbose=verbose) + " "
            return result.strip()

    def inverse_normalize_list_with_metadata(self, text_metas: List, verbose=False) -> List[str]:
        """
        NeMo inverse text normalizer

        Args:
            texts: list of input strings
            verbose: whether to print intermediate meta information

        Returns converted list of input strings
        """
        res = []
        for input in text_metas:
            try:
                text = self.inverse_normalize_with_metadata(input, verbose=verbose)
            except:
                print(input)
                raise Exception
            res.append(text)
        return res

    def inverse_normalize_with_metadata_text(self, text_meta: str, verbose: bool = False):
        """
        Main function. Inverse normalizes tokens from spoken to written form
            e.g. twelve kilograms -> 12 kg

        Args:
            text_meta: list of tokens include text, start time, end time and score for each token
            verbose: whether to print intermediate meta information

        Returns: written form
        """
        # text = " ".join([token['text'] for token in text_meta])
        normalize_text = self.inverse_normalize(text_meta, verbose=verbose)
        # print(normalize_text)
        # If no changes are made, return original
        if text_meta == normalize_text:
            return text_meta


        return normalize_text
    def inverse_normalize_with_metadata(self, text_meta: List, verbose: bool = False):
        """
        Main function. Inverse normalizes tokens from spoken to written form
            e.g. twelve kilograms -> 12 kg

        Args:
            text_meta: list of tokens include text, start time, end time and score for each token
            verbose: whether to print intermediate meta information

        Returns: written form
        """
        text = " ".join([token['text'] for token in text_meta])
        normalize_text = self.inverse_normalize(text, verbose=verbose)

        # If no changes are made, return original
        if text == normalize_text:
            return text_meta

        normalize_text_meta = []
        source_tokens = text.split()
        target_tokens = normalize_text.split()
        matcher = SequenceMatcher(None, source_tokens, target_tokens)
        diffs = list(matcher.get_opcodes())

        for diff in diffs:
            tag, i1, i2, j1, j2 = diff

            if tag == "equal":
                normalize_text_meta.extend(text_meta[i1:i2])
            else:
                start = text_meta[i1]['start']
                end = text_meta[i2 - 1]['end']
                num_target_tokens = j2 - j1
                time_step = (end - start) / num_target_tokens
                for c in range(num_target_tokens):
                    normalize_text_meta.append(
                        {
                            'text': target_tokens[j1 + c],
                            'start': start,
                            'end': start + time_step,
                        }
                    )
                    start += time_step

        return normalize_text_meta


def parse_args():
    parser = ArgumentParser()
    parser.add_argument("input_string", help="input string", type=str)
    parser.add_argument("--language", help="language", choices=['vi'], default="en", type=str)
    parser.add_argument("--verbose", help="print info for debugging", action='store_true')
    parser.add_argument("--overwrite_cache", help="set to True to re-create .far grammar files", action="store_true")
    parser.add_argument(
        "--cache_dir",
        help="path to a dir with .far grammar file. Set to None to avoid using cache",
        default=None,
        type=str,
    )
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    start_time = perf_counter()
    inverse_normalizer = InverseNormalizer(
        lang=args.language, cache_dir=args.cache_dir, overwrite_cache=args.overwrite_cache
    )
    print(f'Time to generate graph: {round(perf_counter() - start_time, 2)} sec')
    start_time = perf_counter()
    print(inverse_normalizer.inverse_normalize(args.input_string, verbose=args.verbose))
    print(f'Execution time: {round(perf_counter() - start_time, 2)} sec')