File size: 12,249 Bytes
74b1bac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import os
import time
import ast
from typing import List, Optional
from pydantic import BaseModel
# from semantic_router.route import Route
from Router.router import Evaluator
from semantic_router.samples import rag_sample, chitchatSample
from utils.pipelines.main import get_last_user_message, add_or_update_system_message, pop_system_message
from blueprints.rag_utils import format_docs
from blueprints.prompts import accurate_rag_prompt, QUERY_PROMPT, evaluator_intent, basic_template, chitchat_prompt
from BM25 import BM25SRetriever
from SafetyChecker import SafetyChecker
from langchain.retrievers import EnsembleRetriever
from BM25 import BM25SRetriever
from semantic_cache.main import SemanticCache
from sentence_transformers import SentenceTransformer
# from database_Routing import DB_Router
from langchain.retrievers.multi_query import MultiQueryRetriever
import cohere
from langchain_core.output_parsers import BaseOutputParser
from langchain_cohere import CohereRerank
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain_groq import ChatGroq
from langchain_core.runnables import RunnablePassthrough
# import logging
# logging.basicConfig(
# level=print,
# format='%(levelname)s - %(message)s')
from dotenv import load_dotenv
load_dotenv()
qdrant_url = os.getenv('URL_QDRANT')
qdrant_api = os.getenv('API_QDRANT')
os.environ["COHERE_API_KEY"]
#####Embedding model######
class LineListOutputParser(BaseOutputParser[List[str]]):
"""Output parser for a list of lines."""
def parse(self, text: str) -> List[str]:
lines = text.strip().split("\n")
return list(filter(None, lines)) # Remove empty lines
class Pipeline:
class Valves(BaseModel):
# List target pipeline ids (models) that this filter will be connected to.
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
pipelines: List[str] = []
# Assign a priority level to the filter pipeline.
# The priority level determines the order in which the filter pipelines are executed.
# The lower the number, the higher the priority.
priority: int = 0
# Add your custom parameters/configuration here e.g. API_KEY that you want user to configure etc.
pass
def __init__(self):
self.type = "filter"
self.name = "Filter"
self.embedding = None
self.route = None
self.stsv_db = None
self.gthv_db = None
self.ttts_db = None
self.reranker = None
self.valves = self.Valves(**{"pipelines": ["*"]})
pass
def split_context(self, context):
split_index = context.find("User question")
system_prompt = context[:split_index].strip()
user_question = context[split_index:].strip()
user_split_index = user_question.find("<context>")
f_system_prompt = str(system_prompt) +"\n" + str(user_question[user_split_index:])
return f_system_prompt
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
from typing import List
from langchain_community.vectorstores import Qdrant
from langchain_huggingface import HuggingFaceEmbeddings
self.embedding = SentenceTransformer("dangvantuan/vietnamese-embedding")
HF_EMBEDDING = HuggingFaceEmbeddings(model_name="dangvantuan/vietnamese-embedding")
from qdrant_client import QdrantClient
from langchain_community.vectorstores import Qdrant
# client = QdrantClient(
# qdrant_url,
# api_key=qdrant_api
# )
client = QdrantClient(url="http://localhost:6333")
gthv = Qdrant(client, collection_name="gioithieuhocvien_db", embeddings= HF_EMBEDDING)
self.gthv_db = gthv.as_retriever()
stsv = Qdrant(client, collection_name="sotaysinhvien_db", embeddings= HF_EMBEDDING)
self.stsv_db = stsv.as_retriever()
ttts = Qdrant(client, collection_name="thongtintuyensinh_db", embeddings= HF_EMBEDDING)
self.ttts_db = ttts.as_retriever()
import pickle
with open('data/thongtintuyensinh.pkl', 'rb') as f:
self.thongtintuyensinh = pickle.load(f)
with open('data/sotaysinhvien.pkl', 'rb') as f:
self.sotaysinhvien = pickle.load(f)
with open('data/gioithieuhocvien.pkl', 'rb') as f:
self.gioithieuhocvien = pickle.load(f)
self.retriever_bm25_tuyensinh = BM25SRetriever.from_documents(self.thongtintuyensinh, k= 5, activate_numba = True)
self.retriever_bm25_sotay = BM25SRetriever.from_documents(self.sotaysinhvien, k= 5, activate_numba = True)
self.retriever_bm25_hocvien = BM25SRetriever.from_documents(self.gioithieuhocvien, k= 5, activate_numba = True)
self.cache = SemanticCache()
self.reranker = CohereRerank(model = "rerank-multilingual-v3.0", top_n = 5)
llm = ChatGroq(model_name="llama3-70b-8192", temperature=0.1,api_key= os.getenv('llm_api_5'))
output_parser = LineListOutputParser()
self.llm_chain = QUERY_PROMPT | llm | output_parser
pass
async def on_shutdown(self):
# This function is called when the server is stopped.
print(f"on_shutdown:{__name__}")
pass
def get_last_assistant_message(self, messages: List[dict]) -> str:
for message in reversed(messages):
if message["role"] == "assistant":
if isinstance(message["content"], list):
for item in message["content"]:
if item["type"] == "text":
return item["text"]
return message["content"]
return ""
def add_or_update_system_message(self,content: str, messages: List[dict]):
"""
Adds a new system message at the beginning of the messages list
:param msg: The message to be added or appended.
:param messages: The list of message dictionaries.
:return: The updated list of message dictionaries.
"""
if messages and messages[0].get("role") == "system":
messages[0]["content"] += f"{content}\n"
else:
# Insert at the beginning
messages.insert(0, {"role": "system", "content": content})
return messages
def add_messages(self,content: str, messages: List[dict]):
messages.insert(0, {"role": "system", "content": content})
return messages
cache_hit = False
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
messages = body.get("messages", [])
print(messages)
user_message = get_last_user_message(messages)
print(user_message)
#####guard#####
checker = SafetyChecker()
safety_result = checker.check_safety(user_message)
if safety_result != 'safe' :
print("Safety check :" ,safety_result)
construct_msg = f"Dựa vào thông tin trả lời câu hỏi của người dùng bằng Tiếng Việt\n\n : {safety_result}"
body["messages"] = self.add_messages(
construct_msg, messages)
print(body)
return body
#####Router#####
# MTA_ROUTE_NAME = 'mta'
# CHITCHAT_ROUTE_NAME = 'chitchat'
# mtaRoute = Route(name=MTA_ROUTE_NAME, samples=rag_sample)
# chitchatRoute = Route(name=CHITCHAT_ROUTE_NAME, samples=chitchatSample)
# router = SemanticRouter(self.embedding, routes=[mtaRoute, chitchatRoute])
# guidedRoute = router.guide(user_message)[1]
# print("Semantic Router :", guidedRoute)
cache_result = self.cache.checker(user_message)
if cache_result is not None:
print("###Cache hit!###")
self.cache_hit = True
construct_msg = f"Dựa vào thông tin trả lời câu hỏi của người dùng bằng Tiếng Việt \n\n : {cache_result}"
body["messages"] = self.add_or_update_system_message(
construct_msg, messages)
print(body)
return body
self.cache_hit = False
print("No cache found! Generation continue")
evaluator = Evaluator(llm="llama3-8b", prompt=evaluator_intent)
output = evaluator.classify_text(user_message)
retriever = None
print(f'Câu hỏi người dùng: {user_message}')
# print(output.result)
if output and output.result == 'OUT_OF_SCOPE' :
print('OUT OF SCOPE')
construct_msg = f"Dựa vào thông tin trả lời câu hỏi của người dùng bằng Tiếng Việt\n\n : {chitchat_prompt}"
body["messages"] = self.add_or_update_system_message(
construct_msg, messages)
print(body)
return body
elif output and output.result == 'ASK_QUYDINH' :
print('SO TAY SINH VIEN DB')
retriever = self.stsv_db
retriever_bm25 = self.retriever_bm25_sotay
# db = self.sotaysinhvien
elif output and output.result == 'ASK_HOCVIEN' :
print('HOC VIEN DB')
retriever = self.gthv_db
retriever_bm25 = self.retriever_bm25_hocvien
# db = self.gioithieuhocvien
elif output and output.result == 'ASK_TUYENSINH' :
print('THONG TIN TUYEN SINH DB')
retriever = self.ttts_db
retriever_bm25 = self.retriever_bm25_tuyensinh
# db = self.thongtintuyensinh
if retriever is not None:
retriever_multi = MultiQueryRetriever(
retriever=retriever, llm_chain=self.llm_chain, parser_key="lines"
)
# retriever_bm25 = BM25SRetriever.from_documents(db, k= 5, activate_numba = True)
ensemble_retriever = EnsembleRetriever(
retrievers=[retriever_bm25, retriever_multi], weights=[0.5, 0.5])
compression = ContextualCompressionRetriever(
base_compressor=self.reranker, base_retriever=ensemble_retriever
)
rag_chain = (
{"context": compression | format_docs, "question": RunnablePassthrough()}
| basic_template
)
# last_asisstant = self.get_last_assistant_message(messages)
# print("###################### last asisstant")
# print(last_asisstant)
#rag_prompt = rag_chain.invoke(user_message + "\n" + last_asisstant).text
rag_prompt = rag_chain.invoke(user_message ).text
system_message = self.split_context(rag_prompt)
body["messages"] = self.add_or_update_system_message(
system_message, messages
)
print(body)
# self.cache.add_to_cache(question, response_text)
return body
else:
print('Retriever is not defined. Check output results and ensure retriever is assigned correctly.')
async def outlet(self, body : dict , user : Optional[dict]= None) -> dict :
print("##########################")
messages = body.get("messages", [])
# print(messages)
user_message = get_last_user_message(messages)
print(user_message)
print("########### Câu hỏi vừa hỏi #################")
# output_list = ast.literal_eval(user_message)
# print(output_list)
# print(output_list[-2]['content'])
# print(output_list[-1]['content'])
# print(f"outlet:{__name__}")
# print(f'##### Cache hit = {self.cache_hit}')
# if body and self.cache_hit == False:
# print(body['messages'][-2]['content'])
# print(body['messages'][-1]['content'])
# self.cache.add_to_cache(body['messages'][-2]['content'], body['messages'][-1]['content'])
print(f"Outlet Body Input: {body}")
return body |