File size: 12,249 Bytes
74b1bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os
import time
import ast
from typing import List, Optional
from pydantic import BaseModel
# from semantic_router.route import Route
from Router.router import Evaluator
from semantic_router.samples import rag_sample, chitchatSample
from utils.pipelines.main import get_last_user_message, add_or_update_system_message, pop_system_message
from blueprints.rag_utils import format_docs
from blueprints.prompts import accurate_rag_prompt, QUERY_PROMPT, evaluator_intent, basic_template, chitchat_prompt
from BM25 import BM25SRetriever
from SafetyChecker import SafetyChecker
from langchain.retrievers import EnsembleRetriever
from BM25 import BM25SRetriever
from semantic_cache.main import SemanticCache
from sentence_transformers import SentenceTransformer
# from database_Routing import DB_Router
from langchain.retrievers.multi_query import MultiQueryRetriever
import cohere
from langchain_core.output_parsers import BaseOutputParser
from langchain_cohere import CohereRerank
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain_groq import ChatGroq
from langchain_core.runnables import RunnablePassthrough
# import logging
# logging.basicConfig(
#         level=print,              
#         format='%(levelname)s - %(message)s')
from dotenv import load_dotenv
load_dotenv()
qdrant_url = os.getenv('URL_QDRANT')
qdrant_api = os.getenv('API_QDRANT')
os.environ["COHERE_API_KEY"]
#####Embedding model######

class LineListOutputParser(BaseOutputParser[List[str]]):
    """Output parser for a list of lines."""

    def parse(self, text: str) -> List[str]:
        lines = text.strip().split("\n")
        return list(filter(None, lines))  # Remove empty lines


class Pipeline:
    class Valves(BaseModel):
        # List target pipeline ids (models) that this filter will be connected to.
        # If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
        pipelines: List[str] = []

        # Assign a priority level to the filter pipeline.
        # The priority level determines the order in which the filter pipelines are executed.
        # The lower the number, the higher the priority.
        priority: int = 0

        # Add your custom parameters/configuration here e.g. API_KEY that you want user to configure etc.
        pass

    def __init__(self):
        self.type = "filter"
        self.name = "Filter"
        self.embedding = None
        self.route = None
        self.stsv_db = None 
        self.gthv_db = None 
        self.ttts_db = None
        self.reranker = None
        self.valves = self.Valves(**{"pipelines": ["*"]})
        pass

    def split_context(self, context):
        split_index = context.find("User question")
        system_prompt = context[:split_index].strip()
        user_question = context[split_index:].strip()
        user_split_index = user_question.find("<context>")
        f_system_prompt = str(system_prompt) +"\n" + str(user_question[user_split_index:])
        return f_system_prompt
    
    async def on_startup(self):
        # This function is called when the server is started.
        print(f"on_startup:{__name__}")
        from typing import List
        from langchain_community.vectorstores import Qdrant
        from langchain_huggingface import HuggingFaceEmbeddings
  
        self.embedding = SentenceTransformer("dangvantuan/vietnamese-embedding")
        HF_EMBEDDING = HuggingFaceEmbeddings(model_name="dangvantuan/vietnamese-embedding")
        from qdrant_client import QdrantClient
        from langchain_community.vectorstores import Qdrant
    
        # client = QdrantClient(
        # qdrant_url,
        #     api_key=qdrant_api
        # )
        client = QdrantClient(url="http://localhost:6333")

        gthv = Qdrant(client, collection_name="gioithieuhocvien_db", embeddings= HF_EMBEDDING)
        self.gthv_db = gthv.as_retriever()

        stsv = Qdrant(client, collection_name="sotaysinhvien_db", embeddings= HF_EMBEDDING)
        self.stsv_db = stsv.as_retriever()

        ttts = Qdrant(client, collection_name="thongtintuyensinh_db", embeddings= HF_EMBEDDING)
        self.ttts_db = ttts.as_retriever()

        import pickle
        with open('data/thongtintuyensinh.pkl', 'rb') as f:
            self.thongtintuyensinh = pickle.load(f)
        with open('data/sotaysinhvien.pkl', 'rb') as f:
            self.sotaysinhvien = pickle.load(f)
        with open('data/gioithieuhocvien.pkl', 'rb') as f:
            self.gioithieuhocvien = pickle.load(f)
        self.retriever_bm25_tuyensinh = BM25SRetriever.from_documents(self.thongtintuyensinh, k= 5, activate_numba = True)
        self.retriever_bm25_sotay = BM25SRetriever.from_documents(self.sotaysinhvien, k= 5, activate_numba = True)
        self.retriever_bm25_hocvien = BM25SRetriever.from_documents(self.gioithieuhocvien, k= 5, activate_numba = True)
        
        self.cache = SemanticCache()
    
        self.reranker = CohereRerank(model = "rerank-multilingual-v3.0", top_n = 5)

        llm = ChatGroq(model_name="llama3-70b-8192", temperature=0.1,api_key= os.getenv('llm_api_5'))
        output_parser = LineListOutputParser()
        self.llm_chain = QUERY_PROMPT | llm | output_parser
        pass

    async def on_shutdown(self):
        # This function is called when the server is stopped.
        print(f"on_shutdown:{__name__}")
        pass
    
    def get_last_assistant_message(self, messages: List[dict]) -> str:
        for message in reversed(messages):
            if message["role"] == "assistant":
                if isinstance(message["content"], list):
                    for item in message["content"]:
                        if item["type"] == "text":
                            return item["text"]
                return message["content"]
        return ""
    def add_or_update_system_message(self,content: str, messages: List[dict]):
        """
        Adds a new system message at the beginning of the messages list
        :param msg: The message to be added or appended.
        :param messages: The list of message dictionaries.
        :return: The updated list of message dictionaries.
        """

        if messages and messages[0].get("role") == "system":
            messages[0]["content"] += f"{content}\n"
        else:
            # Insert at the beginning
            messages.insert(0, {"role": "system", "content": content})

        return messages
    
    def add_messages(self,content: str, messages: List[dict]):
        messages.insert(0, {"role": "system", "content": content})
        return messages

    cache_hit = False
    async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
        messages = body.get("messages", [])
        print(messages)
        user_message = get_last_user_message(messages)
        print(user_message)
        
        #####guard#####
        checker = SafetyChecker()
        safety_result = checker.check_safety(user_message)
        
        if safety_result != 'safe' :
            print("Safety check :" ,safety_result)
            construct_msg = f"Dựa vào thông tin trả lời câu hỏi của người dùng bằng Tiếng Việt\n\n : {safety_result}"
            body["messages"] = self.add_messages(
                     construct_msg, messages)
    
            print(body)
            return body

        #####Router#####
        # MTA_ROUTE_NAME = 'mta'
        # CHITCHAT_ROUTE_NAME = 'chitchat'
        # mtaRoute = Route(name=MTA_ROUTE_NAME, samples=rag_sample)
        # chitchatRoute = Route(name=CHITCHAT_ROUTE_NAME, samples=chitchatSample)
        # router = SemanticRouter(self.embedding, routes=[mtaRoute, chitchatRoute])
             
        # guidedRoute = router.guide(user_message)[1]
        # print("Semantic Router :", guidedRoute)
        
        cache_result = self.cache.checker(user_message)
        if cache_result is not None:
            print("###Cache hit!###")
            self.cache_hit = True
            construct_msg = f"Dựa vào thông tin trả lời câu hỏi của người dùng bằng Tiếng Việt \n\n : {cache_result}"
            body["messages"] = self.add_or_update_system_message(
                     construct_msg, messages)
            print(body)
            return body
        self.cache_hit = False

        print("No cache found! Generation continue")
        evaluator = Evaluator(llm="llama3-8b", prompt=evaluator_intent)
        output = evaluator.classify_text(user_message)

        retriever = None 

        print(f'Câu hỏi người dùng: {user_message}')
        # print(output.result)
        if output and  output.result == 'OUT_OF_SCOPE' :
            print('OUT OF SCOPE') 
            construct_msg = f"Dựa vào thông tin trả lời câu hỏi của người dùng bằng Tiếng Việt\n\n : {chitchat_prompt}"
            body["messages"] = self.add_or_update_system_message(
            construct_msg, messages)
            print(body)
            return body
     
        elif output and  output.result == 'ASK_QUYDINH'  :
                print('SO TAY SINH VIEN DB') 
                retriever = self.stsv_db
                retriever_bm25 = self.retriever_bm25_sotay
                # db = self.sotaysinhvien
        elif output and  output.result == 'ASK_HOCVIEN' :
                print('HOC VIEN DB')  
                retriever = self.gthv_db
                retriever_bm25 = self.retriever_bm25_hocvien
                # db = self.gioithieuhocvien
        elif output and  output.result == 'ASK_TUYENSINH'  :
                print('THONG TIN TUYEN SINH DB') 
                retriever = self.ttts_db
                retriever_bm25 = self.retriever_bm25_tuyensinh
                # db = self.thongtintuyensinh
        if retriever is not None:
            retriever_multi = MultiQueryRetriever(
                    retriever=retriever, llm_chain=self.llm_chain, parser_key="lines"
                ) 

            # retriever_bm25 = BM25SRetriever.from_documents(db, k= 5, activate_numba = True)

            ensemble_retriever = EnsembleRetriever(
            retrievers=[retriever_bm25, retriever_multi], weights=[0.5, 0.5])
            
            compression = ContextualCompressionRetriever(
                base_compressor=self.reranker, base_retriever=ensemble_retriever
                )
            rag_chain = (
                    {"context": compression | format_docs, "question": RunnablePassthrough()}
                    | basic_template
                )
            # last_asisstant = self.get_last_assistant_message(messages)
            # print("###################### last asisstant")
            # print(last_asisstant)
            #rag_prompt = rag_chain.invoke(user_message + "\n" + last_asisstant).text
            rag_prompt = rag_chain.invoke(user_message ).text
            system_message = self.split_context(rag_prompt)
            body["messages"] = self.add_or_update_system_message(
                            system_message, messages
                        )
            print(body)

            # self.cache.add_to_cache(question, response_text)
            return body
        else:
            print('Retriever is not defined. Check output results and ensure retriever is assigned correctly.')

    
    async def outlet(self, body : dict , user : Optional[dict]= None) -> dict :
        print("##########################")
        messages = body.get("messages", [])
        # print(messages)
        user_message = get_last_user_message(messages)
        print(user_message)
        print("########### Câu hỏi vừa hỏi #################")
        # output_list = ast.literal_eval(user_message)
        # print(output_list)
        # print(output_list[-2]['content'])
        # print(output_list[-1]['content'])
        # print(f"outlet:{__name__}")
        # print(f'##### Cache hit = {self.cache_hit}')

        
        # if body and self.cache_hit == False: 
        #     print(body['messages'][-2]['content'])
        #     print(body['messages'][-1]['content'])
        #     self.cache.add_to_cache(body['messages'][-2]['content'], body['messages'][-1]['content'])
        print(f"Outlet Body Input: {body}")
        return body