File size: 5,233 Bytes
a9c93ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f80484
a9c93ba
 
5f80484
a9c93ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import io
import os
import torch
from transformers import (
    AutomaticSpeechRecognitionPipeline,
    WhisperForConditionalGeneration,
    WhisperTokenizer,
    WhisperProcessor,
)
from peft import PeftModel, PeftConfig
import speech_recognition as sr
from datetime import datetime, timedelta
from queue import Queue
from tempfile import NamedTemporaryFile
from time import sleep
from sys import platform



def main():
    # Set your default configuration values here
    peft_model_id = "DuyTa/Vietnamese_ASR"
    language = "Vietnamese"
    task = "transcribe"
    default_energy_threshold = 900
    default_record_timeout = 0.6
    default_phrase_timeout = 3

    # The last time a recording was retrieved from the queue.
    phrase_time = None
    # Current raw audio bytes.
    last_sample = bytes()
    # Thread safe Queue for passing data from the threaded recording callback.
    data_queue = Queue()
    # We use SpeechRecognizer to record our audio because it has a nice feature where it can detect when speech ends.
    recorder = sr.Recognizer()
    recorder.energy_threshold = default_energy_threshold
    # Definitely do this, dynamic energy compensation lowers the energy threshold dramatically to a point where the SpeechRecognizer never stops recording.
    recorder.dynamic_energy_threshold = False
    
    source = sr.Microphone(sample_rate=16000)  # Use default microphone source for non-Linux platforms

    # Load / Download model
    peft_config = PeftConfig.from_pretrained(peft_model_id)
    model = WhisperForConditionalGeneration.from_pretrained(
        peft_config.base_model_name_or_path
    )
    model = PeftModel.from_pretrained(model, peft_model_id)

    model.to("cuda:0")
    processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
    pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, batch_size=8, torch_dtype=torch.float32, device="cuda:0")

    
    

    record_timeout = default_record_timeout
    phrase_timeout = default_phrase_timeout

    temp_file = NamedTemporaryFile().name
    transcription = ['']

    with source:
        recorder.adjust_for_ambient_noise(source)

    def record_callback(_, audio:sr.AudioData) -> None:
        """
        Threaded callback function to receive audio data when recordings finish.
        audio: An AudioData containing the recorded bytes.
        """
        # Grab the raw bytes and push it into the thread safe queue.
        data = audio.get_raw_data()
        data_queue.put(data)

    # Create a background thread that will pass us raw audio bytes.
    # We could do this manually but SpeechRecognizer provides a nice helper.
    recorder.listen_in_background(source, record_callback, phrase_time_limit=record_timeout)

    print("Model loaded.\n")

    while True:
        try:
            now = datetime.utcnow()
            # Pull raw recorded audio from the queue.
            if not data_queue.empty():
                phrase_complete = False
                # If enough time has passed between recordings, consider the phrase complete.
                # Clear the current working audio buffer to start over with the new data.
                if phrase_time and now - phrase_time > timedelta(seconds=phrase_timeout):
                    last_sample = bytes()
                    phrase_complete = True
                # This is the last time we received new audio data from the queue.
                phrase_time = now

                # Concatenate our current audio data with the latest audio data.
                while not data_queue.empty():
                    data = data_queue.get()
                    last_sample += data

                # Use AudioData to convert the raw data to wav data.
                audio_data = sr.AudioData(last_sample, source.SAMPLE_RATE, source.SAMPLE_WIDTH)
                wav_data = io.BytesIO(audio_data.get_wav_data())

                # Write wav data to the temporary file as bytes.
                with open(temp_file, 'w+b') as f:
                    f.write(wav_data.read())

                # Read the transcription.
                text = pipe(temp_file, chunk_length_s=30, return_timestamps=False, generate_kwargs={"language": language, "task": task})["text"]
                

                # If we detected a pause between recordings, add a new item to our transcription.
                # Otherwise edit the existing one.
                if phrase_complete:
                    transcription.append(text)
                else:
                    transcription[-1] = text

                # Clear the console to reprint the updated transcription.
                os.system('cls' if os.name == 'nt' else 'clear')
                for line in transcription:
                    print(line)
                # Flush stdout.
                print('', end='', flush=True)

                # Infinite loops are bad for processors, must sleep.
                sleep(0.25)
        except KeyboardInterrupt:
            break

    print("\n\nTranscription:")
    for line in transcription:
        print(line)

if __name__ == "__main__":
    main()