AndrinRed commited on
Commit
17661cb
·
1 Parent(s): 9cae66d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md CHANGED
@@ -1,3 +1,47 @@
1
  ---
 
2
  license: apache-2.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
  license: apache-2.0
4
+ datasets:
5
+ - ESGBERT/governance_2k
6
+ tags:
7
+ - ESG
8
+ - governance
9
  ---
10
+
11
+ # Model Card for GovDistilRoBERTa-governance
12
+
13
+ ## Model Description
14
+
15
+ Based on [this paper](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4622514), this is the GovDistilRoBERTa-governance language model. A language model that is trained to better classify governance texts in the ESG domain.
16
+
17
+ Using the [GovDistilRoBERTa-base](https://huggingface.co/ESGBERT/GovDistilRoBERTa-base) model as a starting point, the GovDistilRoBERTa-governance Language Model is additionally fine-trained on a 2k governance dataset to detect governance text samples.
18
+
19
+ ## How to Get Started With the Model
20
+ You can use the model with a pipeline for text classification:
21
+
22
+ ```python
23
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
24
+ import datasets
25
+
26
+ tokenizer_name = "ESGBERT/GovDistilRoBERTa-governance"
27
+ model_name = "ESGBERT/GovDistilRoBERTa-governance"
28
+
29
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
30
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, max_len=512)
31
+
32
+ pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
33
+
34
+ # See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
35
+ print(pipe("An ethical code has been issued to all Group employees."))
36
+ ```
37
+
38
+ ## More details can be found in the paper
39
+
40
+ ```bibtex
41
+ @article{Schimanski23ESGBERT,
42
+ title={{Bridiging the Gap in ESG Measurement: Using NLP to Quantify Environmental, Social, and Governance Communication}},
43
+ author={Tobias Schimanski and Andrin Reding and Nico Reding and Julia Bingler and Mathias Kraus and Markus Leippold},
44
+ year={2023},
45
+ journal={Available on SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4622514},
46
+ }
47
+ ```