File size: 2,258 Bytes
c020eba 00baf10 c020eba 00baf10 c020eba 00baf10 c020eba 00baf10 c020eba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model_index:
- name: opus-mt-ja-en-finetuned-ja-to-en_xml
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
metric:
name: Bleu
type: bleu
value: 73.8646
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-ja-en-finetuned-ja-to-en_xml
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7520
- Bleu: 73.8646
- Gen Len: 27.0884
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 1.0512 | 1.0 | 748 | 0.8333 | 59.8234 | 27.905 |
| 0.6076 | 2.0 | 1496 | 0.7817 | 62.5606 | 26.1834 |
| 0.4174 | 3.0 | 2244 | 0.7817 | 64.8346 | 28.2918 |
| 0.2971 | 4.0 | 2992 | 0.7653 | 67.6013 | 27.2222 |
| 0.2172 | 5.0 | 3740 | 0.7295 | 69.4017 | 27.0174 |
| 0.1447 | 6.0 | 4488 | 0.7522 | 68.8355 | 28.2865 |
| 0.0953 | 7.0 | 5236 | 0.7596 | 71.4743 | 27.1861 |
| 0.0577 | 8.0 | 5984 | 0.7469 | 72.0684 | 26.921 |
| 0.04 | 9.0 | 6732 | 0.7526 | 73.2821 | 27.1365 |
| 0.0213 | 10.0 | 7480 | 0.7520 | 73.8646 | 27.0884 |
### Framework versions
- Transformers 4.9.1
- Pytorch 1.10.0+cu111
- Datasets 1.10.2
- Tokenizers 0.10.3
|