Edresson commited on
Commit
81d6d86
·
1 Parent(s): 7be773e

Add checkpoint

Browse files
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ru
3
+ datasets:
4
+ - Common Voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - speech
10
+ - wav2vec2
11
+ - ru
12
+ - russian-speech-corpus
13
+ - automatic-speech-recognition
14
+ - speech
15
+ - PyTorch
16
+ license: apache-2.0
17
+ model-index:
18
+ - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and M-AILABS in Russian
19
+ results:
20
+ - task:
21
+ name: Speech Recognition
22
+ type: automatic-speech-recognition
23
+ metrics:
24
+ - name: Test Common Voice 7.0 WER
25
+ type: wer
26
+ value: 24.80
27
+ ---
28
+
29
+ # Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and M-AILABS in Russian
30
+
31
+ [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Russian using the Common Voice 7.0 and M-AILABS.
32
+
33
+
34
+
35
+ # Use this model
36
+
37
+ ```python
38
+
39
+ from transformers import AutoTokenizer, Wav2Vec2ForCTC
40
+
41
+ tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian")
42
+
43
+ model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian")
44
+ ```
45
+ # Results
46
+ For the results check the [article (Soon)]()
47
+
48
+ # Example test with Common Voice Dataset
49
+
50
+
51
+ ```python
52
+ dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
53
+
54
+ resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
55
+
56
+ def map_to_array(batch):
57
+ speech, _ = torchaudio.load(batch["path"])
58
+ batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
59
+ batch["sampling_rate"] = resampler.new_freq
60
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
61
+ return batch
62
+ ```
63
+
64
+ ```python
65
+ ds = dataset.map(map_to_array)
66
+ result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
67
+ print(wer.compute(predictions=result["predicted"], references=result["target"]))
68
+ ```
69
+
all_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 100.0,
3
+ "eval_loss": 0.44034817814826965,
4
+ "eval_runtime": 322.1126,
5
+ "eval_samples": 8422,
6
+ "eval_samples_per_second": 26.146,
7
+ "eval_wer": 0.36474384728036185,
8
+ "train_runtime": 215429.416,
9
+ "train_samples": 23875,
10
+ "train_samples_per_second": 0.058
11
+ }
config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-100k-voxpopuli",
3
+ "activation_dropout": 0.0,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "codevector_dim": 768,
11
+ "contrastive_logits_temperature": 0.1,
12
+ "conv_bias": true,
13
+ "conv_dim": [
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512,
19
+ 512,
20
+ 512
21
+ ],
22
+ "conv_kernel": [
23
+ 10,
24
+ 3,
25
+ 3,
26
+ 3,
27
+ 3,
28
+ 2,
29
+ 2
30
+ ],
31
+ "conv_stride": [
32
+ 5,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2,
37
+ 2,
38
+ 2
39
+ ],
40
+ "ctc_loss_reduction": "mean",
41
+ "ctc_zero_infinity": true,
42
+ "diversity_loss_weight": 0.1,
43
+ "do_stable_layer_norm": true,
44
+ "eos_token_id": 2,
45
+ "feat_extract_activation": "gelu",
46
+ "feat_extract_dropout": 0.0,
47
+ "feat_extract_norm": "layer",
48
+ "feat_proj_dropout": 0.1,
49
+ "feat_quantizer_dropout": 0.0,
50
+ "final_dropout": 0.0,
51
+ "gradient_checkpointing": true,
52
+ "hidden_act": "gelu",
53
+ "hidden_dropout": 0.1,
54
+ "hidden_size": 1024,
55
+ "initializer_range": 0.02,
56
+ "intermediate_size": 4096,
57
+ "layer_norm_eps": 1e-05,
58
+ "layerdrop": 0.0,
59
+ "mask_channel_length": 10,
60
+ "mask_channel_min_space": 1,
61
+ "mask_channel_other": 0.0,
62
+ "mask_channel_prob": 0.0,
63
+ "mask_channel_selection": "static",
64
+ "mask_feature_length": 10,
65
+ "mask_feature_prob": 0.0,
66
+ "mask_time_length": 10,
67
+ "mask_time_min_space": 1,
68
+ "mask_time_other": 0.0,
69
+ "mask_time_prob": 0.05,
70
+ "mask_time_selection": "static",
71
+ "model_type": "wav2vec2",
72
+ "num_attention_heads": 16,
73
+ "num_codevector_groups": 2,
74
+ "num_codevectors_per_group": 320,
75
+ "num_conv_pos_embedding_groups": 16,
76
+ "num_conv_pos_embeddings": 128,
77
+ "num_feat_extract_layers": 7,
78
+ "num_hidden_layers": 24,
79
+ "num_negatives": 100,
80
+ "pad_token_id": 0,
81
+ "proj_codevector_dim": 768,
82
+ "transformers_version": "4.6.1",
83
+ "vocab_size": 39
84
+ }
config_train.json ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "run_name": "Wav2Vec-fine-tuning-TEDx",
3
+ "run_description": "Fine tuning TEDx",
4
+ "seed": 42,
5
+ // AUDIO PARAMS
6
+ "sampling_rate": 16000,
7
+
8
+ // VOCABULARY PARAMETERS
9
+ "vocab":{
10
+ "vocab_path": "example/vocab_example_ru.json", // generic vocab for Portuguese
11
+ "blank": "<pad>", // blank token for padding
12
+ "silence": "|", // token between words
13
+ "unk": "<unk>" // unk token
14
+ },
15
+
16
+ // TRAINING
17
+ "batch_size": 8, // Batch size for training.
18
+ "mixed_precision": true, // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate.
19
+ "early_stop_epochs": 10, // If 0 disabled else Number of epochs for stop training with validation loss dont decrease
20
+ "preprocess_dataset": false, // if true, the dataset will be pre-processed and saved in disk, otherwise the audio files will be loaded in each step. Preprocessing makes training faster, but requires much more disk space.
21
+
22
+ // OPTIMIZER
23
+ "epochs": 100, // total number of epochs to train.
24
+ "lr": 0.00003, // Initial learning rate.
25
+ "gradient_accumulation_steps": 24,
26
+
27
+ // LOGGING
28
+ "logging_steps": 100, // Number of steps to plot.
29
+ "load_best_model_at_end": true,
30
+ "save_total_limit": 3,
31
+ "warmup_ratio": 0.04761904762142857, // 0 disable Ratio of total training steps used for a linear warmup from 0 to learning_rate
32
+ "warmup_steps": 0, // 0 disable Number of steps used for a linear warmup from 0 to learning_rate
33
+
34
+ // DATA LOADING
35
+ "num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are goo
36
+
37
+ // MODEL
38
+ "freeze_feature_extractor": true, // Whether to freeze the feature extractor layers of the model.
39
+ "attention_dropout": 0.1, // The dropout ratio for the attention probabilities.
40
+ "activation_dropout": 0.1, // The dropout ratio for activations inside the fully connected layer.
41
+ "hidden_dropout": 0.1, // The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
42
+ "feat_proj_dropout": 0.1, // The dropout probabilitiy for all 1D convolutional layers in feature extractor.
43
+ "mask_time_prob": 0.05, // Propability of each feature vector along the time axis to be chosen as the start of the vector span to be masked.
44
+ "layerdrop": 0.0, // The LayerDrop probability.
45
+ "gradient_checkpointing": true, // If True, use gradient checkpointing to save memory at the expense of slower backward pass.
46
+
47
+ // ToDo: Implement Time mask and Frequency Mask
48
+ "audio_augmentation":[
49
+ // additive noise and room impulse response (RIR) simulation similar to: https://arxiv.org/pdf/2009.14153.pdf
50
+ {
51
+ "name": "additive",
52
+ "sounds_path":"../../datasets/musan/speech/", // download: https://www.openslr.org/17/
53
+ "lru_cache_size": 32, // Maximum size of the LRU cache for storing noise files in memory
54
+ "min_snr_in_db": 13.0,
55
+ "max_snr_in_db": 20.0,
56
+ // "sample_rate": 16000,
57
+ "p": 0.25
58
+ },
59
+ {
60
+ "name": "additive",
61
+ "sounds_path":"../../datasets/musan/music/", // download: https://www.openslr.org/17/
62
+ "lru_cache_size": 32, // Maximum size of the LRU cache for storing noise files in memory
63
+ "min_snr_in_db": 5.0,
64
+ "max_snr_in_db": 15.0,
65
+ // "sample_rate": 16000,
66
+ "p": 0.25
67
+ },
68
+ {
69
+ "name": "additive",
70
+ "sounds_path":"../../datasets/musan/noise/", // download: https://www.openslr.org/17/
71
+ "lru_cache_size": 32, // Maximum size of the LRU cache for storing noise files in memory
72
+ "min_snr_in_db": 0.0,
73
+ "max_snr_in_db": 15.0,
74
+ // "sample_rate": 16000,
75
+ "p": 0.25
76
+ },
77
+ // rir filter proposed by: https://ieeexplore.ieee.org/document/7953152
78
+ {
79
+ "name": "rir",
80
+ "ir_path": "../../datasets/RIRS_NOISES/simulated_rirs/", // download: https://www.openslr.org/28/
81
+ "lru_cache_size": 128, // Maximum size of the LRU cache for storing noise files in memory
82
+ // "sample_rate": 16000,
83
+ "p": 0.25
84
+ }
85
+ ,
86
+ // {
87
+ // "name": "gain",
88
+ // "min_gain_in_db": -18.0,
89
+ // "max_gain_in_db": 6,
90
+ // "p": 0.25 // propability of apply this method, 0 is disable
91
+ // },
92
+ {
93
+ "name": "pitch_shift",
94
+ "min_semitones": -4,
95
+ "max_semitones": 4,
96
+ "p": 0.25 // propability of apply this method, 0 is disable
97
+ },
98
+ {
99
+ "name": "gaussian",
100
+ "min_amplitude": 0.0001,
101
+ "max_amplitude": 0.001,
102
+ "p": 0.25 // propability of apply this method, 0 is disable
103
+ }
104
+ ],
105
+
106
+ // PATHS
107
+ "output_path": "../checkpoints/Wav2Vec-voxpopuli/one-speaker/Final-paper/GT/RU/100-epoch/",
108
+ // CACHE
109
+ "dataset_cache": "../datasets/",
110
+
111
+ // DATASETS
112
+ "datasets":{
113
+
114
+ "files_path": "/workspace/edresson/datasets/Common_Voice/cv-corpus-7.0-2021-07-21/ru/", // relative path for audios It's will be join with the CS
115
+ "train":
116
+ [
117
+ // this dicts is pass directly for the load dataset see the documentation: https://huggingface.co/docs/datasets/package_reference/loading_methods.html#datasets.load_dataset
118
+ {
119
+ "name": "csv",
120
+ "path": "csv",
121
+ "data_files": ["/workspace/edresson/datasets/Common_Voice/cv-corpus-7.0-2021-07-21/ru/train_converted.csv"], // csv files
122
+ "text_column": "text",
123
+ "path_column": "file_path"
124
+ },
125
+ {
126
+ "name": "csv",
127
+ "path": "csv",
128
+ "data_files": ["/workspace/edresson/datasets/M-AILABS/ru_RU/train_converted.csv"], // csv files
129
+ "text_column": "text",
130
+ "path_column": "file_path"
131
+ }
132
+ ]
133
+ ,
134
+ "devel":
135
+ [
136
+ {
137
+ "name": "csv",
138
+ "path": "csv",
139
+ "data_files": ["/workspace/edresson/datasets/Common_Voice/cv-corpus-7.0-2021-07-21/ru/dev_converted.csv"], // csv files
140
+ "text_column": "text",
141
+ "path_column": "file_path"
142
+ }
143
+
144
+ ]
145
+ ,
146
+ "test":
147
+ {
148
+ "name": "csv",
149
+ "path": "csv",
150
+ "data_files": ["/workspace/edresson/datasets/Common_Voice/cv-corpus-7.0-2021-07-21/ru/test_converted.csv"], // csv files
151
+ "text_column": "text",
152
+ "path_column": "file_path"
153
+ }
154
+
155
+ }//,
156
+ // used only for test
157
+ // "KenLM":{
158
+ // "kenlm_model_path": "../../kenLM/binaries/subtitle/4-gram/lm.binary", // Path for KenLM model
159
+ // "lexicon_path": "example/lexicon.lst", // file with all words for limit the decoder search
160
+ // "beam": 2048,
161
+ // "nbest": 1,
162
+ // "beam_threshold": 25,
163
+ // "lm_weight": 1,
164
+ // "word_score": -1,
165
+ // "sil_weight": 0
166
+ // }
167
+
168
+
169
+
170
+ }
171
+
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 100.0,
3
+ "eval_loss": 0.44034817814826965,
4
+ "eval_runtime": 322.1126,
5
+ "eval_samples": 8422,
6
+ "eval_samples_per_second": 26.146,
7
+ "eval_wer": 0.36474384728036185
8
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d681c41aa0f502474355e397a9259f32ce1cc6ce698d831c3d75cc170b1912e1
3
+ size 1262089108
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|"}
train_results.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 100.0,
3
+ "train_runtime": 215429.416,
4
+ "train_samples": 23875,
5
+ "train_samples_per_second": 0.058
6
+ }
trainer_state.json ADDED
@@ -0,0 +1,1573 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.43025869131088257,
3
+ "best_model_checkpoint": "../checkpoints/Wav2Vec-voxpopuli/one-speaker/Final-paper/GT/RU/100-epoch/checkpoint-12152",
4
+ "epoch": 99.99698492462312,
5
+ "global_step": 12400,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 5.076142131979695e-08,
13
+ "loss": 11.6061,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.8,
18
+ "learning_rate": 4.974619289340102e-06,
19
+ "loss": 14.721,
20
+ "step": 100
21
+ },
22
+ {
23
+ "epoch": 1.0,
24
+ "eval_loss": 10.616052627563477,
25
+ "eval_runtime": 323.0492,
26
+ "eval_samples_per_second": 26.07,
27
+ "eval_wer": 0.9999740801700341,
28
+ "step": 124
29
+ },
30
+ {
31
+ "epoch": 1.61,
32
+ "learning_rate": 9.999999999999999e-06,
33
+ "loss": 10.5538,
34
+ "step": 200
35
+ },
36
+ {
37
+ "epoch": 2.0,
38
+ "eval_loss": 5.4549055099487305,
39
+ "eval_runtime": 322.5611,
40
+ "eval_samples_per_second": 26.11,
41
+ "eval_wer": 1.0,
42
+ "step": 248
43
+ },
44
+ {
45
+ "epoch": 2.42,
46
+ "learning_rate": 1.5076142131979694e-05,
47
+ "loss": 6.6454,
48
+ "step": 300
49
+ },
50
+ {
51
+ "epoch": 3.0,
52
+ "eval_loss": 4.0469207763671875,
53
+ "eval_runtime": 322.6151,
54
+ "eval_samples_per_second": 26.105,
55
+ "eval_wer": 1.0,
56
+ "step": 372
57
+ },
58
+ {
59
+ "epoch": 3.23,
60
+ "learning_rate": 2.015228426395939e-05,
61
+ "loss": 4.8946,
62
+ "step": 400
63
+ },
64
+ {
65
+ "epoch": 4.0,
66
+ "eval_loss": 3.3774263858795166,
67
+ "eval_runtime": 321.7327,
68
+ "eval_samples_per_second": 26.177,
69
+ "eval_wer": 1.0,
70
+ "step": 496
71
+ },
72
+ {
73
+ "epoch": 4.03,
74
+ "learning_rate": 2.522842639593909e-05,
75
+ "loss": 3.8757,
76
+ "step": 500
77
+ },
78
+ {
79
+ "epoch": 4.84,
80
+ "learning_rate": 2.9984757388432552e-05,
81
+ "loss": 3.3388,
82
+ "step": 600
83
+ },
84
+ {
85
+ "epoch": 5.0,
86
+ "eval_loss": 3.1716513633728027,
87
+ "eval_runtime": 320.8269,
88
+ "eval_samples_per_second": 26.251,
89
+ "eval_wer": 1.0,
90
+ "step": 620
91
+ },
92
+ {
93
+ "epoch": 5.64,
94
+ "learning_rate": 2.973071386230841e-05,
95
+ "loss": 3.1981,
96
+ "step": 700
97
+ },
98
+ {
99
+ "epoch": 6.0,
100
+ "eval_loss": 3.110382080078125,
101
+ "eval_runtime": 321.1936,
102
+ "eval_samples_per_second": 26.221,
103
+ "eval_wer": 1.0,
104
+ "step": 744
105
+ },
106
+ {
107
+ "epoch": 6.45,
108
+ "learning_rate": 2.9476670336184266e-05,
109
+ "loss": 3.1373,
110
+ "step": 800
111
+ },
112
+ {
113
+ "epoch": 7.0,
114
+ "eval_loss": 3.060086727142334,
115
+ "eval_runtime": 321.2282,
116
+ "eval_samples_per_second": 26.218,
117
+ "eval_wer": 1.0,
118
+ "step": 868
119
+ },
120
+ {
121
+ "epoch": 7.26,
122
+ "learning_rate": 2.9222626810060127e-05,
123
+ "loss": 3.0877,
124
+ "step": 900
125
+ },
126
+ {
127
+ "epoch": 8.0,
128
+ "eval_loss": 3.034672498703003,
129
+ "eval_runtime": 321.5996,
130
+ "eval_samples_per_second": 26.188,
131
+ "eval_wer": 1.0,
132
+ "step": 992
133
+ },
134
+ {
135
+ "epoch": 8.06,
136
+ "learning_rate": 2.8968583283935984e-05,
137
+ "loss": 3.0573,
138
+ "step": 1000
139
+ },
140
+ {
141
+ "epoch": 8.87,
142
+ "learning_rate": 2.8714539757811837e-05,
143
+ "loss": 3.0092,
144
+ "step": 1100
145
+ },
146
+ {
147
+ "epoch": 9.0,
148
+ "eval_loss": 2.9337708950042725,
149
+ "eval_runtime": 321.5622,
150
+ "eval_samples_per_second": 26.191,
151
+ "eval_wer": 1.0,
152
+ "step": 1116
153
+ },
154
+ {
155
+ "epoch": 9.68,
156
+ "learning_rate": 2.8460496231687698e-05,
157
+ "loss": 2.8881,
158
+ "step": 1200
159
+ },
160
+ {
161
+ "epoch": 10.0,
162
+ "eval_loss": 2.485553741455078,
163
+ "eval_runtime": 322.8144,
164
+ "eval_samples_per_second": 26.089,
165
+ "eval_wer": 0.9980430528375733,
166
+ "step": 1240
167
+ },
168
+ {
169
+ "epoch": 10.48,
170
+ "learning_rate": 2.8206452705563555e-05,
171
+ "loss": 2.6025,
172
+ "step": 1300
173
+ },
174
+ {
175
+ "epoch": 11.0,
176
+ "eval_loss": 1.928577184677124,
177
+ "eval_runtime": 322.3486,
178
+ "eval_samples_per_second": 26.127,
179
+ "eval_wer": 0.9831909902671039,
180
+ "step": 1364
181
+ },
182
+ {
183
+ "epoch": 11.29,
184
+ "learning_rate": 2.795240917943941e-05,
185
+ "loss": 2.2005,
186
+ "step": 1400
187
+ },
188
+ {
189
+ "epoch": 12.0,
190
+ "eval_loss": 1.6449922323226929,
191
+ "eval_runtime": 322.269,
192
+ "eval_samples_per_second": 26.133,
193
+ "eval_wer": 0.9675483728826739,
194
+ "step": 1488
195
+ },
196
+ {
197
+ "epoch": 12.1,
198
+ "learning_rate": 2.769836565331527e-05,
199
+ "loss": 1.9289,
200
+ "step": 1500
201
+ },
202
+ {
203
+ "epoch": 12.9,
204
+ "learning_rate": 2.7444322127191126e-05,
205
+ "loss": 1.7455,
206
+ "step": 1600
207
+ },
208
+ {
209
+ "epoch": 13.0,
210
+ "eval_loss": 1.4952174425125122,
211
+ "eval_runtime": 324.8661,
212
+ "eval_samples_per_second": 25.925,
213
+ "eval_wer": 0.9416674226617073,
214
+ "step": 1612
215
+ },
216
+ {
217
+ "epoch": 13.71,
218
+ "learning_rate": 2.7190278601066983e-05,
219
+ "loss": 1.6272,
220
+ "step": 1700
221
+ },
222
+ {
223
+ "epoch": 14.0,
224
+ "eval_loss": 1.3720481395721436,
225
+ "eval_runtime": 323.1738,
226
+ "eval_samples_per_second": 26.06,
227
+ "eval_wer": 0.9150088775417633,
228
+ "step": 1736
229
+ },
230
+ {
231
+ "epoch": 14.51,
232
+ "learning_rate": 2.693623507494284e-05,
233
+ "loss": 1.5294,
234
+ "step": 1800
235
+ },
236
+ {
237
+ "epoch": 15.0,
238
+ "eval_loss": 1.2405216693878174,
239
+ "eval_runtime": 324.1276,
240
+ "eval_samples_per_second": 25.984,
241
+ "eval_wer": 0.8807299024118401,
242
+ "step": 1860
243
+ },
244
+ {
245
+ "epoch": 15.32,
246
+ "learning_rate": 2.66821915488187e-05,
247
+ "loss": 1.4318,
248
+ "step": 1900
249
+ },
250
+ {
251
+ "epoch": 16.0,
252
+ "eval_loss": 1.1300945281982422,
253
+ "eval_runtime": 322.6101,
254
+ "eval_samples_per_second": 26.106,
255
+ "eval_wer": 0.8378844234781819,
256
+ "step": 1984
257
+ },
258
+ {
259
+ "epoch": 16.13,
260
+ "learning_rate": 2.6428148022694557e-05,
261
+ "loss": 1.3389,
262
+ "step": 2000
263
+ },
264
+ {
265
+ "epoch": 16.93,
266
+ "learning_rate": 2.6174104496570414e-05,
267
+ "loss": 1.271,
268
+ "step": 2100
269
+ },
270
+ {
271
+ "epoch": 17.0,
272
+ "eval_loss": 1.0245275497436523,
273
+ "eval_runtime": 322.1222,
274
+ "eval_samples_per_second": 26.145,
275
+ "eval_wer": 0.7895957802516815,
276
+ "step": 2108
277
+ },
278
+ {
279
+ "epoch": 17.74,
280
+ "learning_rate": 2.592006097044627e-05,
281
+ "loss": 1.1946,
282
+ "step": 2200
283
+ },
284
+ {
285
+ "epoch": 18.0,
286
+ "eval_loss": 0.9543349146842957,
287
+ "eval_runtime": 323.4197,
288
+ "eval_samples_per_second": 26.04,
289
+ "eval_wer": 0.7479944531563872,
290
+ "step": 2232
291
+ },
292
+ {
293
+ "epoch": 18.55,
294
+ "learning_rate": 2.5666017444322128e-05,
295
+ "loss": 1.1378,
296
+ "step": 2300
297
+ },
298
+ {
299
+ "epoch": 19.0,
300
+ "eval_loss": 0.8853476643562317,
301
+ "eval_runtime": 323.2454,
302
+ "eval_samples_per_second": 26.055,
303
+ "eval_wer": 0.7081427145837923,
304
+ "step": 2356
305
+ },
306
+ {
307
+ "epoch": 19.35,
308
+ "learning_rate": 2.5411973918197985e-05,
309
+ "loss": 1.0823,
310
+ "step": 2400
311
+ },
312
+ {
313
+ "epoch": 20.0,
314
+ "eval_loss": 0.8469970226287842,
315
+ "eval_runtime": 335.6759,
316
+ "eval_samples_per_second": 25.09,
317
+ "eval_wer": 0.677920192843535,
318
+ "step": 2480
319
+ },
320
+ {
321
+ "epoch": 20.16,
322
+ "learning_rate": 2.5157930392073842e-05,
323
+ "loss": 1.0365,
324
+ "step": 2500
325
+ },
326
+ {
327
+ "epoch": 20.96,
328
+ "learning_rate": 2.4903886865949702e-05,
329
+ "loss": 0.9959,
330
+ "step": 2600
331
+ },
332
+ {
333
+ "epoch": 21.0,
334
+ "eval_loss": 0.8100908994674683,
335
+ "eval_runtime": 321.969,
336
+ "eval_samples_per_second": 26.158,
337
+ "eval_wer": 0.6509765295939659,
338
+ "step": 2604
339
+ },
340
+ {
341
+ "epoch": 21.77,
342
+ "learning_rate": 2.4649843339825556e-05,
343
+ "loss": 0.9687,
344
+ "step": 2700
345
+ },
346
+ {
347
+ "epoch": 22.0,
348
+ "eval_loss": 0.7900197505950928,
349
+ "eval_runtime": 323.9206,
350
+ "eval_samples_per_second": 26.0,
351
+ "eval_wer": 0.631653296354376,
352
+ "step": 2728
353
+ },
354
+ {
355
+ "epoch": 22.58,
356
+ "learning_rate": 2.4395799813701413e-05,
357
+ "loss": 0.9366,
358
+ "step": 2800
359
+ },
360
+ {
361
+ "epoch": 23.0,
362
+ "eval_loss": 0.7546305060386658,
363
+ "eval_runtime": 341.914,
364
+ "eval_samples_per_second": 24.632,
365
+ "eval_wer": 0.6096732805432796,
366
+ "step": 2852
367
+ },
368
+ {
369
+ "epoch": 23.39,
370
+ "learning_rate": 2.4141756287577273e-05,
371
+ "loss": 0.9048,
372
+ "step": 2900
373
+ },
374
+ {
375
+ "epoch": 24.0,
376
+ "eval_loss": 0.7222914099693298,
377
+ "eval_runtime": 322.3328,
378
+ "eval_samples_per_second": 26.128,
379
+ "eval_wer": 0.5865398322987001,
380
+ "step": 2976
381
+ },
382
+ {
383
+ "epoch": 24.19,
384
+ "learning_rate": 2.388771276145313e-05,
385
+ "loss": 0.8833,
386
+ "step": 3000
387
+ },
388
+ {
389
+ "epoch": 25.0,
390
+ "learning_rate": 2.3633669235328987e-05,
391
+ "loss": 0.8561,
392
+ "step": 3100
393
+ },
394
+ {
395
+ "epoch": 25.0,
396
+ "eval_loss": 0.6935585141181946,
397
+ "eval_runtime": 321.6792,
398
+ "eval_samples_per_second": 26.181,
399
+ "eval_wer": 0.569432744521196,
400
+ "step": 3100
401
+ },
402
+ {
403
+ "epoch": 25.8,
404
+ "learning_rate": 2.3379625709204844e-05,
405
+ "loss": 0.833,
406
+ "step": 3200
407
+ },
408
+ {
409
+ "epoch": 26.0,
410
+ "eval_loss": 0.6709055304527283,
411
+ "eval_runtime": 392.4001,
412
+ "eval_samples_per_second": 21.463,
413
+ "eval_wer": 0.5539586060315445,
414
+ "step": 3224
415
+ },
416
+ {
417
+ "epoch": 26.61,
418
+ "learning_rate": 2.31255821830807e-05,
419
+ "loss": 0.8282,
420
+ "step": 3300
421
+ },
422
+ {
423
+ "epoch": 27.0,
424
+ "eval_loss": 0.6760900020599365,
425
+ "eval_runtime": 350.7656,
426
+ "eval_samples_per_second": 24.01,
427
+ "eval_wer": 0.5524552558935213,
428
+ "step": 3348
429
+ },
430
+ {
431
+ "epoch": 27.42,
432
+ "learning_rate": 2.287153865695656e-05,
433
+ "loss": 0.8011,
434
+ "step": 3400
435
+ },
436
+ {
437
+ "epoch": 28.0,
438
+ "eval_loss": 0.6472740769386292,
439
+ "eval_runtime": 323.4247,
440
+ "eval_samples_per_second": 26.04,
441
+ "eval_wer": 0.5308510776169308,
442
+ "step": 3472
443
+ },
444
+ {
445
+ "epoch": 28.23,
446
+ "learning_rate": 2.2617495130832415e-05,
447
+ "loss": 0.7905,
448
+ "step": 3500
449
+ },
450
+ {
451
+ "epoch": 29.0,
452
+ "eval_loss": 0.6365417838096619,
453
+ "eval_runtime": 321.7957,
454
+ "eval_samples_per_second": 26.172,
455
+ "eval_wer": 0.5260947888181854,
456
+ "step": 3596
457
+ },
458
+ {
459
+ "epoch": 29.03,
460
+ "learning_rate": 2.2363451604708276e-05,
461
+ "loss": 0.7742,
462
+ "step": 3600
463
+ },
464
+ {
465
+ "epoch": 29.84,
466
+ "learning_rate": 2.2109408078584133e-05,
467
+ "loss": 0.7617,
468
+ "step": 3700
469
+ },
470
+ {
471
+ "epoch": 30.0,
472
+ "eval_loss": 0.6270097494125366,
473
+ "eval_runtime": 324.3695,
474
+ "eval_samples_per_second": 25.964,
475
+ "eval_wer": 0.5142235066937961,
476
+ "step": 3720
477
+ },
478
+ {
479
+ "epoch": 30.64,
480
+ "learning_rate": 2.1855364552459986e-05,
481
+ "loss": 0.7437,
482
+ "step": 3800
483
+ },
484
+ {
485
+ "epoch": 31.0,
486
+ "eval_loss": 0.6166727542877197,
487
+ "eval_runtime": 379.1426,
488
+ "eval_samples_per_second": 22.213,
489
+ "eval_wer": 0.508741462656005,
490
+ "step": 3844
491
+ },
492
+ {
493
+ "epoch": 31.45,
494
+ "learning_rate": 2.1601321026335847e-05,
495
+ "loss": 0.7326,
496
+ "step": 3900
497
+ },
498
+ {
499
+ "epoch": 32.0,
500
+ "eval_loss": 0.6096071004867554,
501
+ "eval_runtime": 320.7646,
502
+ "eval_samples_per_second": 26.256,
503
+ "eval_wer": 0.5016394292453441,
504
+ "step": 3968
505
+ },
506
+ {
507
+ "epoch": 32.26,
508
+ "learning_rate": 2.1347277500211704e-05,
509
+ "loss": 0.7259,
510
+ "step": 4000
511
+ },
512
+ {
513
+ "epoch": 33.0,
514
+ "eval_loss": 0.594753623008728,
515
+ "eval_runtime": 340.2561,
516
+ "eval_samples_per_second": 24.752,
517
+ "eval_wer": 0.49193245292310883,
518
+ "step": 4092
519
+ },
520
+ {
521
+ "epoch": 33.06,
522
+ "learning_rate": 2.109323397408756e-05,
523
+ "loss": 0.7167,
524
+ "step": 4100
525
+ },
526
+ {
527
+ "epoch": 33.87,
528
+ "learning_rate": 2.083919044796342e-05,
529
+ "loss": 0.706,
530
+ "step": 4200
531
+ },
532
+ {
533
+ "epoch": 34.0,
534
+ "eval_loss": 0.5761483907699585,
535
+ "eval_runtime": 321.498,
536
+ "eval_samples_per_second": 26.196,
537
+ "eval_wer": 0.4813571622970153,
538
+ "step": 4216
539
+ },
540
+ {
541
+ "epoch": 34.68,
542
+ "learning_rate": 2.0585146921839275e-05,
543
+ "loss": 0.6949,
544
+ "step": 4300
545
+ },
546
+ {
547
+ "epoch": 35.0,
548
+ "eval_loss": 0.5691355466842651,
549
+ "eval_runtime": 401.8625,
550
+ "eval_samples_per_second": 20.957,
551
+ "eval_wer": 0.4750845634452638,
552
+ "step": 4340
553
+ },
554
+ {
555
+ "epoch": 35.48,
556
+ "learning_rate": 2.0331103395715132e-05,
557
+ "loss": 0.6864,
558
+ "step": 4400
559
+ },
560
+ {
561
+ "epoch": 36.0,
562
+ "eval_loss": 0.5673930048942566,
563
+ "eval_runtime": 365.2098,
564
+ "eval_samples_per_second": 23.061,
565
+ "eval_wer": 0.4734256943274452,
566
+ "step": 4464
567
+ },
568
+ {
569
+ "epoch": 36.29,
570
+ "learning_rate": 2.007705986959099e-05,
571
+ "loss": 0.6753,
572
+ "step": 4500
573
+ },
574
+ {
575
+ "epoch": 37.0,
576
+ "eval_loss": 0.559423565864563,
577
+ "eval_runtime": 361.5077,
578
+ "eval_samples_per_second": 23.297,
579
+ "eval_wer": 0.46351135936548254,
580
+ "step": 4588
581
+ },
582
+ {
583
+ "epoch": 37.1,
584
+ "learning_rate": 1.982301634346685e-05,
585
+ "loss": 0.6758,
586
+ "step": 4600
587
+ },
588
+ {
589
+ "epoch": 37.9,
590
+ "learning_rate": 1.9568972817342706e-05,
591
+ "loss": 0.6551,
592
+ "step": 4700
593
+ },
594
+ {
595
+ "epoch": 38.0,
596
+ "eval_loss": 0.5445694327354431,
597
+ "eval_runtime": 320.4252,
598
+ "eval_samples_per_second": 26.284,
599
+ "eval_wer": 0.45804227524267443,
600
+ "step": 4712
601
+ },
602
+ {
603
+ "epoch": 38.71,
604
+ "learning_rate": 1.931492929121856e-05,
605
+ "loss": 0.6579,
606
+ "step": 4800
607
+ },
608
+ {
609
+ "epoch": 39.0,
610
+ "eval_loss": 0.5564364790916443,
611
+ "eval_runtime": 321.0622,
612
+ "eval_samples_per_second": 26.232,
613
+ "eval_wer": 0.45992146291520325,
614
+ "step": 4836
615
+ },
616
+ {
617
+ "epoch": 39.51,
618
+ "learning_rate": 1.906088576509442e-05,
619
+ "loss": 0.653,
620
+ "step": 4900
621
+ },
622
+ {
623
+ "epoch": 40.0,
624
+ "eval_loss": 0.5391087532043457,
625
+ "eval_runtime": 321.4848,
626
+ "eval_samples_per_second": 26.197,
627
+ "eval_wer": 0.44950169126890527,
628
+ "step": 4960
629
+ },
630
+ {
631
+ "epoch": 40.32,
632
+ "learning_rate": 1.8806842238970277e-05,
633
+ "loss": 0.6409,
634
+ "step": 5000
635
+ },
636
+ {
637
+ "epoch": 41.0,
638
+ "eval_loss": 0.5319904685020447,
639
+ "eval_runtime": 339.4882,
640
+ "eval_samples_per_second": 24.808,
641
+ "eval_wer": 0.44666346988763755,
642
+ "step": 5084
643
+ },
644
+ {
645
+ "epoch": 41.13,
646
+ "learning_rate": 1.8552798712846134e-05,
647
+ "loss": 0.6313,
648
+ "step": 5100
649
+ },
650
+ {
651
+ "epoch": 41.93,
652
+ "learning_rate": 1.8298755186721995e-05,
653
+ "loss": 0.6215,
654
+ "step": 5200
655
+ },
656
+ {
657
+ "epoch": 42.0,
658
+ "eval_loss": 0.5356938242912292,
659
+ "eval_runtime": 332.3067,
660
+ "eval_samples_per_second": 25.344,
661
+ "eval_wer": 0.44181646168401134,
662
+ "step": 5208
663
+ },
664
+ {
665
+ "epoch": 42.74,
666
+ "learning_rate": 1.804471166059785e-05,
667
+ "loss": 0.6314,
668
+ "step": 5300
669
+ },
670
+ {
671
+ "epoch": 43.0,
672
+ "eval_loss": 0.527190625667572,
673
+ "eval_runtime": 322.6287,
674
+ "eval_samples_per_second": 26.104,
675
+ "eval_wer": 0.4371508922901466,
676
+ "step": 5332
677
+ },
678
+ {
679
+ "epoch": 43.55,
680
+ "learning_rate": 1.7790668134473705e-05,
681
+ "loss": 0.6234,
682
+ "step": 5400
683
+ },
684
+ {
685
+ "epoch": 44.0,
686
+ "eval_loss": 0.5141627788543701,
687
+ "eval_runtime": 322.2738,
688
+ "eval_samples_per_second": 26.133,
689
+ "eval_wer": 0.4277031142675704,
690
+ "step": 5456
691
+ },
692
+ {
693
+ "epoch": 44.35,
694
+ "learning_rate": 1.7536624608349562e-05,
695
+ "loss": 0.6062,
696
+ "step": 5500
697
+ },
698
+ {
699
+ "epoch": 45.0,
700
+ "eval_loss": 0.5133494734764099,
701
+ "eval_runtime": 471.7285,
702
+ "eval_samples_per_second": 17.853,
703
+ "eval_wer": 0.427223597413201,
704
+ "step": 5580
705
+ },
706
+ {
707
+ "epoch": 45.16,
708
+ "learning_rate": 1.7282581082225423e-05,
709
+ "loss": 0.6054,
710
+ "step": 5600
711
+ },
712
+ {
713
+ "epoch": 45.96,
714
+ "learning_rate": 1.702853755610128e-05,
715
+ "loss": 0.6003,
716
+ "step": 5700
717
+ },
718
+ {
719
+ "epoch": 46.0,
720
+ "eval_loss": 0.5130398869514465,
721
+ "eval_runtime": 384.8918,
722
+ "eval_samples_per_second": 21.881,
723
+ "eval_wer": 0.42505929161104705,
724
+ "step": 5704
725
+ },
726
+ {
727
+ "epoch": 46.77,
728
+ "learning_rate": 1.6774494029977137e-05,
729
+ "loss": 0.6032,
730
+ "step": 5800
731
+ },
732
+ {
733
+ "epoch": 47.0,
734
+ "eval_loss": 0.5147580504417419,
735
+ "eval_runtime": 323.7827,
736
+ "eval_samples_per_second": 26.011,
737
+ "eval_wer": 0.42323194359845,
738
+ "step": 5828
739
+ },
740
+ {
741
+ "epoch": 47.58,
742
+ "learning_rate": 1.6520450503852994e-05,
743
+ "loss": 0.5958,
744
+ "step": 5900
745
+ },
746
+ {
747
+ "epoch": 48.0,
748
+ "eval_loss": 0.5133355259895325,
749
+ "eval_runtime": 372.4972,
750
+ "eval_samples_per_second": 22.61,
751
+ "eval_wer": 0.42092507873148355,
752
+ "step": 5952
753
+ },
754
+ {
755
+ "epoch": 48.39,
756
+ "learning_rate": 1.626640697772885e-05,
757
+ "loss": 0.5858,
758
+ "step": 6000
759
+ },
760
+ {
761
+ "epoch": 49.0,
762
+ "eval_loss": 0.5059527158737183,
763
+ "eval_runtime": 322.2789,
764
+ "eval_samples_per_second": 26.133,
765
+ "eval_wer": 0.41855341428960224,
766
+ "step": 6076
767
+ },
768
+ {
769
+ "epoch": 49.19,
770
+ "learning_rate": 1.6012363451604708e-05,
771
+ "loss": 0.5856,
772
+ "step": 6100
773
+ },
774
+ {
775
+ "epoch": 50.0,
776
+ "learning_rate": 1.5758319925480568e-05,
777
+ "loss": 0.5772,
778
+ "step": 6200
779
+ },
780
+ {
781
+ "epoch": 50.0,
782
+ "eval_loss": 0.49973514676094055,
783
+ "eval_runtime": 343.25,
784
+ "eval_samples_per_second": 24.536,
785
+ "eval_wer": 0.4129806508469304,
786
+ "step": 6200
787
+ },
788
+ {
789
+ "epoch": 50.8,
790
+ "learning_rate": 1.5504276399356425e-05,
791
+ "loss": 0.572,
792
+ "step": 6300
793
+ },
794
+ {
795
+ "epoch": 51.0,
796
+ "eval_loss": 0.5019872188568115,
797
+ "eval_runtime": 322.3073,
798
+ "eval_samples_per_second": 26.13,
799
+ "eval_wer": 0.41037570793535594,
800
+ "step": 6324
801
+ },
802
+ {
803
+ "epoch": 51.61,
804
+ "learning_rate": 1.525023287323228e-05,
805
+ "loss": 0.5686,
806
+ "step": 6400
807
+ },
808
+ {
809
+ "epoch": 52.0,
810
+ "eval_loss": 0.49171143770217896,
811
+ "eval_runtime": 383.2843,
812
+ "eval_samples_per_second": 21.973,
813
+ "eval_wer": 0.40717460893456536,
814
+ "step": 6448
815
+ },
816
+ {
817
+ "epoch": 52.42,
818
+ "learning_rate": 1.4996189347108139e-05,
819
+ "loss": 0.5669,
820
+ "step": 6500
821
+ },
822
+ {
823
+ "epoch": 53.0,
824
+ "eval_loss": 0.49633103609085083,
825
+ "eval_runtime": 369.1234,
826
+ "eval_samples_per_second": 22.816,
827
+ "eval_wer": 0.40889827762729875,
828
+ "step": 6572
829
+ },
830
+ {
831
+ "epoch": 53.23,
832
+ "learning_rate": 1.4742145820983994e-05,
833
+ "loss": 0.5617,
834
+ "step": 6600
835
+ },
836
+ {
837
+ "epoch": 54.0,
838
+ "eval_loss": 0.47671106457710266,
839
+ "eval_runtime": 322.4159,
840
+ "eval_samples_per_second": 26.122,
841
+ "eval_wer": 0.4013167273622685,
842
+ "step": 6696
843
+ },
844
+ {
845
+ "epoch": 54.03,
846
+ "learning_rate": 1.4488102294859853e-05,
847
+ "loss": 0.5555,
848
+ "step": 6700
849
+ },
850
+ {
851
+ "epoch": 54.84,
852
+ "learning_rate": 1.4234058768735712e-05,
853
+ "loss": 0.5493,
854
+ "step": 6800
855
+ },
856
+ {
857
+ "epoch": 55.0,
858
+ "eval_loss": 0.486770361661911,
859
+ "eval_runtime": 324.9403,
860
+ "eval_samples_per_second": 25.919,
861
+ "eval_wer": 0.40276823784035976,
862
+ "step": 6820
863
+ },
864
+ {
865
+ "epoch": 55.64,
866
+ "learning_rate": 1.3980015242611567e-05,
867
+ "loss": 0.5513,
868
+ "step": 6900
869
+ },
870
+ {
871
+ "epoch": 56.0,
872
+ "eval_loss": 0.48170745372772217,
873
+ "eval_runtime": 322.6243,
874
+ "eval_samples_per_second": 26.105,
875
+ "eval_wer": 0.4010316092326434,
876
+ "step": 6944
877
+ },
878
+ {
879
+ "epoch": 56.45,
880
+ "learning_rate": 1.3725971716487426e-05,
881
+ "loss": 0.5414,
882
+ "step": 7000
883
+ },
884
+ {
885
+ "epoch": 57.0,
886
+ "eval_loss": 0.47643014788627625,
887
+ "eval_runtime": 323.5223,
888
+ "eval_samples_per_second": 26.032,
889
+ "eval_wer": 0.398711784450694,
890
+ "step": 7068
891
+ },
892
+ {
893
+ "epoch": 57.26,
894
+ "learning_rate": 1.3471928190363281e-05,
895
+ "loss": 0.5442,
896
+ "step": 7100
897
+ },
898
+ {
899
+ "epoch": 58.0,
900
+ "eval_loss": 0.47905492782592773,
901
+ "eval_runtime": 323.3248,
902
+ "eval_samples_per_second": 26.048,
903
+ "eval_wer": 0.3988284236855406,
904
+ "step": 7192
905
+ },
906
+ {
907
+ "epoch": 58.06,
908
+ "learning_rate": 1.321788466423914e-05,
909
+ "loss": 0.5456,
910
+ "step": 7200
911
+ },
912
+ {
913
+ "epoch": 58.87,
914
+ "learning_rate": 1.2963841138114999e-05,
915
+ "loss": 0.5347,
916
+ "step": 7300
917
+ },
918
+ {
919
+ "epoch": 59.0,
920
+ "eval_loss": 0.4702017605304718,
921
+ "eval_runtime": 322.1046,
922
+ "eval_samples_per_second": 26.147,
923
+ "eval_wer": 0.3954588457899716,
924
+ "step": 7316
925
+ },
926
+ {
927
+ "epoch": 59.68,
928
+ "learning_rate": 1.2709797611990854e-05,
929
+ "loss": 0.536,
930
+ "step": 7400
931
+ },
932
+ {
933
+ "epoch": 60.0,
934
+ "eval_loss": 0.4706251621246338,
935
+ "eval_runtime": 354.4664,
936
+ "eval_samples_per_second": 23.76,
937
+ "eval_wer": 0.3925299050038232,
938
+ "step": 7440
939
+ },
940
+ {
941
+ "epoch": 60.48,
942
+ "learning_rate": 1.2455754085866713e-05,
943
+ "loss": 0.5434,
944
+ "step": 7500
945
+ },
946
+ {
947
+ "epoch": 61.0,
948
+ "eval_loss": 0.4594361484050751,
949
+ "eval_runtime": 322.7998,
950
+ "eval_samples_per_second": 26.09,
951
+ "eval_wer": 0.38897888829849275,
952
+ "step": 7564
953
+ },
954
+ {
955
+ "epoch": 61.29,
956
+ "learning_rate": 1.220171055974257e-05,
957
+ "loss": 0.5327,
958
+ "step": 7600
959
+ },
960
+ {
961
+ "epoch": 62.0,
962
+ "eval_loss": 0.459745854139328,
963
+ "eval_runtime": 322.7677,
964
+ "eval_samples_per_second": 26.093,
965
+ "eval_wer": 0.38711266054094684,
966
+ "step": 7688
967
+ },
968
+ {
969
+ "epoch": 62.1,
970
+ "learning_rate": 1.1947667033618427e-05,
971
+ "loss": 0.5236,
972
+ "step": 7700
973
+ },
974
+ {
975
+ "epoch": 62.9,
976
+ "learning_rate": 1.1693623507494285e-05,
977
+ "loss": 0.5289,
978
+ "step": 7800
979
+ },
980
+ {
981
+ "epoch": 63.0,
982
+ "eval_loss": 0.45170098543167114,
983
+ "eval_runtime": 326.5763,
984
+ "eval_samples_per_second": 25.789,
985
+ "eval_wer": 0.3873977786705719,
986
+ "step": 7812
987
+ },
988
+ {
989
+ "epoch": 63.71,
990
+ "learning_rate": 1.143957998137014e-05,
991
+ "loss": 0.5214,
992
+ "step": 7900
993
+ },
994
+ {
995
+ "epoch": 64.0,
996
+ "eval_loss": 0.46003150939941406,
997
+ "eval_runtime": 343.8868,
998
+ "eval_samples_per_second": 24.491,
999
+ "eval_wer": 0.3875273778204015,
1000
+ "step": 7936
1001
+ },
1002
+ {
1003
+ "epoch": 64.51,
1004
+ "learning_rate": 1.1185536455246e-05,
1005
+ "loss": 0.521,
1006
+ "step": 8000
1007
+ },
1008
+ {
1009
+ "epoch": 65.0,
1010
+ "eval_loss": 0.4538457691669464,
1011
+ "eval_runtime": 322.9965,
1012
+ "eval_samples_per_second": 26.075,
1013
+ "eval_wer": 0.38370420290042895,
1014
+ "step": 8060
1015
+ },
1016
+ {
1017
+ "epoch": 65.32,
1018
+ "learning_rate": 1.0931492929121856e-05,
1019
+ "loss": 0.5157,
1020
+ "step": 8100
1021
+ },
1022
+ {
1023
+ "epoch": 66.0,
1024
+ "eval_loss": 0.45208266377449036,
1025
+ "eval_runtime": 321.7023,
1026
+ "eval_samples_per_second": 26.179,
1027
+ "eval_wer": 0.3809955806689908,
1028
+ "step": 8184
1029
+ },
1030
+ {
1031
+ "epoch": 66.13,
1032
+ "learning_rate": 1.0677449402997713e-05,
1033
+ "loss": 0.5199,
1034
+ "step": 8200
1035
+ },
1036
+ {
1037
+ "epoch": 66.93,
1038
+ "learning_rate": 1.0423405876873572e-05,
1039
+ "loss": 0.5129,
1040
+ "step": 8300
1041
+ },
1042
+ {
1043
+ "epoch": 67.0,
1044
+ "eval_loss": 0.45266279578208923,
1045
+ "eval_runtime": 321.8831,
1046
+ "eval_samples_per_second": 26.165,
1047
+ "eval_wer": 0.3802309456849963,
1048
+ "step": 8308
1049
+ },
1050
+ {
1051
+ "epoch": 67.74,
1052
+ "learning_rate": 1.0169362350749429e-05,
1053
+ "loss": 0.5121,
1054
+ "step": 8400
1055
+ },
1056
+ {
1057
+ "epoch": 68.0,
1058
+ "eval_loss": 0.4551254212856293,
1059
+ "eval_runtime": 321.9874,
1060
+ "eval_samples_per_second": 26.156,
1061
+ "eval_wer": 0.38033462500486,
1062
+ "step": 8432
1063
+ },
1064
+ {
1065
+ "epoch": 68.55,
1066
+ "learning_rate": 9.915318824625286e-06,
1067
+ "loss": 0.5071,
1068
+ "step": 8500
1069
+ },
1070
+ {
1071
+ "epoch": 69.0,
1072
+ "eval_loss": 0.44843462109565735,
1073
+ "eval_runtime": 322.9859,
1074
+ "eval_samples_per_second": 26.075,
1075
+ "eval_wer": 0.3778333614131491,
1076
+ "step": 8556
1077
+ },
1078
+ {
1079
+ "epoch": 69.35,
1080
+ "learning_rate": 9.661275298501143e-06,
1081
+ "loss": 0.5066,
1082
+ "step": 8600
1083
+ },
1084
+ {
1085
+ "epoch": 70.0,
1086
+ "eval_loss": 0.4638895094394684,
1087
+ "eval_runtime": 321.9358,
1088
+ "eval_samples_per_second": 26.16,
1089
+ "eval_wer": 0.3829525278314174,
1090
+ "step": 8680
1091
+ },
1092
+ {
1093
+ "epoch": 70.16,
1094
+ "learning_rate": 9.407231772377e-06,
1095
+ "loss": 0.515,
1096
+ "step": 8700
1097
+ },
1098
+ {
1099
+ "epoch": 70.96,
1100
+ "learning_rate": 9.153188246252859e-06,
1101
+ "loss": 0.5058,
1102
+ "step": 8800
1103
+ },
1104
+ {
1105
+ "epoch": 71.0,
1106
+ "eval_loss": 0.45568934082984924,
1107
+ "eval_runtime": 400.5646,
1108
+ "eval_samples_per_second": 21.025,
1109
+ "eval_wer": 0.37642073068000675,
1110
+ "step": 8804
1111
+ },
1112
+ {
1113
+ "epoch": 71.77,
1114
+ "learning_rate": 8.899144720128716e-06,
1115
+ "loss": 0.4984,
1116
+ "step": 8900
1117
+ },
1118
+ {
1119
+ "epoch": 72.0,
1120
+ "eval_loss": 0.4499472975730896,
1121
+ "eval_runtime": 396.1535,
1122
+ "eval_samples_per_second": 21.259,
1123
+ "eval_wer": 0.37675768846956365,
1124
+ "step": 8928
1125
+ },
1126
+ {
1127
+ "epoch": 72.58,
1128
+ "learning_rate": 8.645101194004573e-06,
1129
+ "loss": 0.4986,
1130
+ "step": 9000
1131
+ },
1132
+ {
1133
+ "epoch": 73.0,
1134
+ "eval_loss": 0.4449363946914673,
1135
+ "eval_runtime": 613.581,
1136
+ "eval_samples_per_second": 13.726,
1137
+ "eval_wer": 0.37433418436775057,
1138
+ "step": 9052
1139
+ },
1140
+ {
1141
+ "epoch": 73.39,
1142
+ "learning_rate": 8.39105766788043e-06,
1143
+ "loss": 0.5002,
1144
+ "step": 9100
1145
+ },
1146
+ {
1147
+ "epoch": 74.0,
1148
+ "eval_loss": 0.44110018014907837,
1149
+ "eval_runtime": 394.6941,
1150
+ "eval_samples_per_second": 21.338,
1151
+ "eval_wer": 0.37380282785344926,
1152
+ "step": 9176
1153
+ },
1154
+ {
1155
+ "epoch": 74.19,
1156
+ "learning_rate": 8.137014141756288e-06,
1157
+ "loss": 0.4913,
1158
+ "step": 9200
1159
+ },
1160
+ {
1161
+ "epoch": 75.0,
1162
+ "learning_rate": 7.882970615632145e-06,
1163
+ "loss": 0.498,
1164
+ "step": 9300
1165
+ },
1166
+ {
1167
+ "epoch": 75.0,
1168
+ "eval_loss": 0.4465697705745697,
1169
+ "eval_runtime": 319.8787,
1170
+ "eval_samples_per_second": 26.329,
1171
+ "eval_wer": 0.3730900325293866,
1172
+ "step": 9300
1173
+ },
1174
+ {
1175
+ "epoch": 75.8,
1176
+ "learning_rate": 7.628927089508002e-06,
1177
+ "loss": 0.491,
1178
+ "step": 9400
1179
+ },
1180
+ {
1181
+ "epoch": 76.0,
1182
+ "eval_loss": 0.4530308246612549,
1183
+ "eval_runtime": 320.8191,
1184
+ "eval_samples_per_second": 26.252,
1185
+ "eval_wer": 0.37500809994686435,
1186
+ "step": 9424
1187
+ },
1188
+ {
1189
+ "epoch": 76.61,
1190
+ "learning_rate": 7.37488356338386e-06,
1191
+ "loss": 0.4861,
1192
+ "step": 9500
1193
+ },
1194
+ {
1195
+ "epoch": 77.0,
1196
+ "eval_loss": 0.4457537829875946,
1197
+ "eval_runtime": 486.5829,
1198
+ "eval_samples_per_second": 17.308,
1199
+ "eval_wer": 0.3743860240276824,
1200
+ "step": 9548
1201
+ },
1202
+ {
1203
+ "epoch": 77.42,
1204
+ "learning_rate": 7.120840037259717e-06,
1205
+ "loss": 0.4931,
1206
+ "step": 9600
1207
+ },
1208
+ {
1209
+ "epoch": 78.0,
1210
+ "eval_loss": 0.43678486347198486,
1211
+ "eval_runtime": 322.4494,
1212
+ "eval_samples_per_second": 26.119,
1213
+ "eval_wer": 0.3692538976944311,
1214
+ "step": 9672
1215
+ },
1216
+ {
1217
+ "epoch": 78.23,
1218
+ "learning_rate": 6.866796511135574e-06,
1219
+ "loss": 0.4918,
1220
+ "step": 9700
1221
+ },
1222
+ {
1223
+ "epoch": 79.0,
1224
+ "eval_loss": 0.4429604113101959,
1225
+ "eval_runtime": 323.2104,
1226
+ "eval_samples_per_second": 26.057,
1227
+ "eval_wer": 0.37231243763040917,
1228
+ "step": 9796
1229
+ },
1230
+ {
1231
+ "epoch": 79.03,
1232
+ "learning_rate": 6.612752985011432e-06,
1233
+ "loss": 0.4884,
1234
+ "step": 9800
1235
+ },
1236
+ {
1237
+ "epoch": 79.84,
1238
+ "learning_rate": 6.35870945888729e-06,
1239
+ "loss": 0.4851,
1240
+ "step": 9900
1241
+ },
1242
+ {
1243
+ "epoch": 80.0,
1244
+ "eval_loss": 0.44754448533058167,
1245
+ "eval_runtime": 321.4015,
1246
+ "eval_samples_per_second": 26.204,
1247
+ "eval_wer": 0.36930573735436295,
1248
+ "step": 9920
1249
+ },
1250
+ {
1251
+ "epoch": 80.64,
1252
+ "learning_rate": 6.104665932763147e-06,
1253
+ "loss": 0.4857,
1254
+ "step": 10000
1255
+ },
1256
+ {
1257
+ "epoch": 81.0,
1258
+ "eval_loss": 0.4332858920097351,
1259
+ "eval_runtime": 321.8635,
1260
+ "eval_samples_per_second": 26.166,
1261
+ "eval_wer": 0.36658415520794185,
1262
+ "step": 10044
1263
+ },
1264
+ {
1265
+ "epoch": 81.45,
1266
+ "learning_rate": 5.850622406639005e-06,
1267
+ "loss": 0.4864,
1268
+ "step": 10100
1269
+ },
1270
+ {
1271
+ "epoch": 82.0,
1272
+ "eval_loss": 0.4359518885612488,
1273
+ "eval_runtime": 321.9658,
1274
+ "eval_samples_per_second": 26.158,
1275
+ "eval_wer": 0.36487344643019143,
1276
+ "step": 10168
1277
+ },
1278
+ {
1279
+ "epoch": 82.26,
1280
+ "learning_rate": 5.596578880514862e-06,
1281
+ "loss": 0.4851,
1282
+ "step": 10200
1283
+ },
1284
+ {
1285
+ "epoch": 83.0,
1286
+ "eval_loss": 0.43162801861763,
1287
+ "eval_runtime": 357.942,
1288
+ "eval_samples_per_second": 23.529,
1289
+ "eval_wer": 0.36326641697230466,
1290
+ "step": 10292
1291
+ },
1292
+ {
1293
+ "epoch": 83.06,
1294
+ "learning_rate": 5.342535354390719e-06,
1295
+ "loss": 0.4808,
1296
+ "step": 10300
1297
+ },
1298
+ {
1299
+ "epoch": 83.87,
1300
+ "learning_rate": 5.088491828266577e-06,
1301
+ "loss": 0.4859,
1302
+ "step": 10400
1303
+ },
1304
+ {
1305
+ "epoch": 84.0,
1306
+ "eval_loss": 0.4436122179031372,
1307
+ "eval_runtime": 401.5799,
1308
+ "eval_samples_per_second": 20.972,
1309
+ "eval_wer": 0.36780238721633984,
1310
+ "step": 10416
1311
+ },
1312
+ {
1313
+ "epoch": 84.68,
1314
+ "learning_rate": 4.8344483021424344e-06,
1315
+ "loss": 0.4777,
1316
+ "step": 10500
1317
+ },
1318
+ {
1319
+ "epoch": 85.0,
1320
+ "eval_loss": 0.4375947117805481,
1321
+ "eval_runtime": 347.8526,
1322
+ "eval_samples_per_second": 24.211,
1323
+ "eval_wer": 0.368061585515999,
1324
+ "step": 10540
1325
+ },
1326
+ {
1327
+ "epoch": 85.48,
1328
+ "learning_rate": 4.5804047760182914e-06,
1329
+ "loss": 0.4816,
1330
+ "step": 10600
1331
+ },
1332
+ {
1333
+ "epoch": 86.0,
1334
+ "eval_loss": 0.43457648158073425,
1335
+ "eval_runtime": 364.1744,
1336
+ "eval_samples_per_second": 23.126,
1337
+ "eval_wer": 0.36431617008592426,
1338
+ "step": 10664
1339
+ },
1340
+ {
1341
+ "epoch": 86.29,
1342
+ "learning_rate": 4.3263612498941484e-06,
1343
+ "loss": 0.4771,
1344
+ "step": 10700
1345
+ },
1346
+ {
1347
+ "epoch": 87.0,
1348
+ "eval_loss": 0.4322541058063507,
1349
+ "eval_runtime": 376.0177,
1350
+ "eval_samples_per_second": 22.398,
1351
+ "eval_wer": 0.36263138113813975,
1352
+ "step": 10788
1353
+ },
1354
+ {
1355
+ "epoch": 87.1,
1356
+ "learning_rate": 4.074858159031247e-06,
1357
+ "loss": 0.4691,
1358
+ "step": 10800
1359
+ },
1360
+ {
1361
+ "epoch": 87.9,
1362
+ "learning_rate": 3.820814632907104e-06,
1363
+ "loss": 0.4767,
1364
+ "step": 10900
1365
+ },
1366
+ {
1367
+ "epoch": 88.0,
1368
+ "eval_loss": 0.43458959460258484,
1369
+ "eval_runtime": 322.6421,
1370
+ "eval_samples_per_second": 26.103,
1371
+ "eval_wer": 0.3655473620093052,
1372
+ "step": 10912
1373
+ },
1374
+ {
1375
+ "epoch": 88.71,
1376
+ "learning_rate": 3.566771106782962e-06,
1377
+ "loss": 0.4751,
1378
+ "step": 11000
1379
+ },
1380
+ {
1381
+ "epoch": 89.0,
1382
+ "eval_loss": 0.436272531747818,
1383
+ "eval_runtime": 323.9622,
1384
+ "eval_samples_per_second": 25.997,
1385
+ "eval_wer": 0.36510672489988466,
1386
+ "step": 11036
1387
+ },
1388
+ {
1389
+ "epoch": 89.51,
1390
+ "learning_rate": 3.31272758065882e-06,
1391
+ "loss": 0.4818,
1392
+ "step": 11100
1393
+ },
1394
+ {
1395
+ "epoch": 90.0,
1396
+ "eval_loss": 0.43062761425971985,
1397
+ "eval_runtime": 322.2604,
1398
+ "eval_samples_per_second": 26.134,
1399
+ "eval_wer": 0.36658415520794185,
1400
+ "step": 11160
1401
+ },
1402
+ {
1403
+ "epoch": 90.32,
1404
+ "learning_rate": 3.058684054534677e-06,
1405
+ "loss": 0.4788,
1406
+ "step": 11200
1407
+ },
1408
+ {
1409
+ "epoch": 91.0,
1410
+ "eval_loss": 0.4332570731639862,
1411
+ "eval_runtime": 323.8045,
1412
+ "eval_samples_per_second": 26.01,
1413
+ "eval_wer": 0.36097251202032116,
1414
+ "step": 11284
1415
+ },
1416
+ {
1417
+ "epoch": 91.13,
1418
+ "learning_rate": 2.8046405284105347e-06,
1419
+ "loss": 0.4803,
1420
+ "step": 11300
1421
+ },
1422
+ {
1423
+ "epoch": 91.93,
1424
+ "learning_rate": 2.5505970022863917e-06,
1425
+ "loss": 0.4729,
1426
+ "step": 11400
1427
+ },
1428
+ {
1429
+ "epoch": 92.0,
1430
+ "eval_loss": 0.4346713721752167,
1431
+ "eval_runtime": 323.6128,
1432
+ "eval_samples_per_second": 26.025,
1433
+ "eval_wer": 0.3635515351019297,
1434
+ "step": 11408
1435
+ },
1436
+ {
1437
+ "epoch": 92.74,
1438
+ "learning_rate": 2.296553476162249e-06,
1439
+ "loss": 0.4751,
1440
+ "step": 11500
1441
+ },
1442
+ {
1443
+ "epoch": 93.0,
1444
+ "eval_loss": 0.43105602264404297,
1445
+ "eval_runtime": 322.0335,
1446
+ "eval_samples_per_second": 26.153,
1447
+ "eval_wer": 0.36287761952281594,
1448
+ "step": 11532
1449
+ },
1450
+ {
1451
+ "epoch": 93.55,
1452
+ "learning_rate": 2.0425099500381066e-06,
1453
+ "loss": 0.4735,
1454
+ "step": 11600
1455
+ },
1456
+ {
1457
+ "epoch": 94.0,
1458
+ "eval_loss": 0.4452572464942932,
1459
+ "eval_runtime": 322.6054,
1460
+ "eval_samples_per_second": 26.106,
1461
+ "eval_wer": 0.36640271639818045,
1462
+ "step": 11656
1463
+ },
1464
+ {
1465
+ "epoch": 94.35,
1466
+ "learning_rate": 1.788466423913964e-06,
1467
+ "loss": 0.4676,
1468
+ "step": 11700
1469
+ },
1470
+ {
1471
+ "epoch": 95.0,
1472
+ "eval_loss": 0.43202486634254456,
1473
+ "eval_runtime": 322.7019,
1474
+ "eval_samples_per_second": 26.098,
1475
+ "eval_wer": 0.3624110625834295,
1476
+ "step": 11780
1477
+ },
1478
+ {
1479
+ "epoch": 95.16,
1480
+ "learning_rate": 1.5344228977898214e-06,
1481
+ "loss": 0.4754,
1482
+ "step": 11800
1483
+ },
1484
+ {
1485
+ "epoch": 95.96,
1486
+ "learning_rate": 1.2803793716656788e-06,
1487
+ "loss": 0.467,
1488
+ "step": 11900
1489
+ },
1490
+ {
1491
+ "epoch": 96.0,
1492
+ "eval_loss": 0.4379962384700775,
1493
+ "eval_runtime": 322.1888,
1494
+ "eval_samples_per_second": 26.14,
1495
+ "eval_wer": 0.36453648864063454,
1496
+ "step": 11904
1497
+ },
1498
+ {
1499
+ "epoch": 96.77,
1500
+ "learning_rate": 1.0263358455415363e-06,
1501
+ "loss": 0.4796,
1502
+ "step": 12000
1503
+ },
1504
+ {
1505
+ "epoch": 97.0,
1506
+ "eval_loss": 0.43832120299339294,
1507
+ "eval_runtime": 320.8953,
1508
+ "eval_samples_per_second": 26.245,
1509
+ "eval_wer": 0.3636552144217934,
1510
+ "step": 12028
1511
+ },
1512
+ {
1513
+ "epoch": 97.58,
1514
+ "learning_rate": 7.722923194173936e-07,
1515
+ "loss": 0.4731,
1516
+ "step": 12100
1517
+ },
1518
+ {
1519
+ "epoch": 98.0,
1520
+ "eval_loss": 0.43025869131088257,
1521
+ "eval_runtime": 323.1419,
1522
+ "eval_samples_per_second": 26.063,
1523
+ "eval_wer": 0.36028563652622436,
1524
+ "step": 12152
1525
+ },
1526
+ {
1527
+ "epoch": 98.39,
1528
+ "learning_rate": 5.18248793293251e-07,
1529
+ "loss": 0.4666,
1530
+ "step": 12200
1531
+ },
1532
+ {
1533
+ "epoch": 99.0,
1534
+ "eval_loss": 0.43907731771469116,
1535
+ "eval_runtime": 321.8174,
1536
+ "eval_samples_per_second": 26.17,
1537
+ "eval_wer": 0.36353857518694677,
1538
+ "step": 12276
1539
+ },
1540
+ {
1541
+ "epoch": 99.19,
1542
+ "learning_rate": 2.642052671691083e-07,
1543
+ "loss": 0.476,
1544
+ "step": 12300
1545
+ },
1546
+ {
1547
+ "epoch": 100.0,
1548
+ "learning_rate": 1.0161741044965706e-08,
1549
+ "loss": 0.4705,
1550
+ "step": 12400
1551
+ },
1552
+ {
1553
+ "epoch": 100.0,
1554
+ "eval_loss": 0.43463364243507385,
1555
+ "eval_runtime": 323.3381,
1556
+ "eval_samples_per_second": 26.047,
1557
+ "eval_wer": 0.36169826725936677,
1558
+ "step": 12400
1559
+ },
1560
+ {
1561
+ "epoch": 100.0,
1562
+ "step": 12400,
1563
+ "total_flos": 0,
1564
+ "train_runtime": 215429.416,
1565
+ "train_samples_per_second": 0.058
1566
+ }
1567
+ ],
1568
+ "max_steps": 12400,
1569
+ "num_train_epochs": 100,
1570
+ "total_flos": 0,
1571
+ "trial_name": null,
1572
+ "trial_params": null
1573
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63f05ebddc0741251fa05cbd314be2f82a6628b6d155e7f3d1b8be8546e05e09
3
+ size 2543
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "-": 5, "ё": 6, "а": 7, "б": 8, "в": 9, "г": 10, "д": 11, "е": 12, "ж": 13, "з": 14, "и": 15, "й": 16, "к": 17, "л": 18, "м": 19, "н": 20, "о": 21, "п": 22, "р": 23, "с": 24, "т": 25, "у": 26, "ф": 27, "х": 28, "ц": 29, "ч": 30, "ш": 31, "щ": 32, "ъ": 33, "ы": 34, "ь": 35, "э": 36, "ю": 37, "я": 38}