Eempostor commited on
Commit
bdc4b8b
·
verified ·
1 Parent(s): ee2c717

Delete lib/infer_libs/fcpe.py

Browse files
Files changed (1) hide show
  1. lib/infer_libs/fcpe.py +0 -873
lib/infer_libs/fcpe.py DELETED
@@ -1,873 +0,0 @@
1
- from typing import Union
2
-
3
- import torch.nn.functional as F
4
- import numpy as np
5
- import torch
6
- import torch.nn as nn
7
- from torch.nn.utils import weight_norm
8
- from torchaudio.transforms import Resample
9
- import os
10
- import librosa
11
- import soundfile as sf
12
- import torch.utils.data
13
- from librosa.filters import mel as librosa_mel_fn
14
- import math
15
- from functools import partial
16
-
17
- from einops import rearrange, repeat
18
- from local_attention import LocalAttention
19
- from torch import nn
20
-
21
- os.environ["LRU_CACHE_CAPACITY"] = "3"
22
-
23
- def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
24
- sampling_rate = None
25
- try:
26
- data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
27
- except Exception as ex:
28
- print(f"'{full_path}' failed to load.\nException:")
29
- print(ex)
30
- if return_empty_on_exception:
31
- return [], sampling_rate or target_sr or 48000
32
- else:
33
- raise Exception(ex)
34
-
35
- if len(data.shape) > 1:
36
- data = data[:, 0]
37
- assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
38
-
39
- if np.issubdtype(data.dtype, np.integer): # if audio data is type int
40
- max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
41
- else: # if audio data is type fp32
42
- max_mag = max(np.amax(data), -np.amin(data))
43
- max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
44
-
45
- data = torch.FloatTensor(data.astype(np.float32))/max_mag
46
-
47
- if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
48
- return [], sampling_rate or target_sr or 48000
49
- if target_sr is not None and sampling_rate != target_sr:
50
- data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
51
- sampling_rate = target_sr
52
-
53
- return data, sampling_rate
54
-
55
- def dynamic_range_compression(x, C=1, clip_val=1e-5):
56
- return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
57
-
58
- def dynamic_range_decompression(x, C=1):
59
- return np.exp(x) / C
60
-
61
- def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
62
- return torch.log(torch.clamp(x, min=clip_val) * C)
63
-
64
- def dynamic_range_decompression_torch(x, C=1):
65
- return torch.exp(x) / C
66
-
67
- class STFT():
68
- def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
69
- self.target_sr = sr
70
-
71
- self.n_mels = n_mels
72
- self.n_fft = n_fft
73
- self.win_size = win_size
74
- self.hop_length = hop_length
75
- self.fmin = fmin
76
- self.fmax = fmax
77
- self.clip_val = clip_val
78
- self.mel_basis = {}
79
- self.hann_window = {}
80
-
81
- def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
82
- sampling_rate = self.target_sr
83
- n_mels = self.n_mels
84
- n_fft = self.n_fft
85
- win_size = self.win_size
86
- hop_length = self.hop_length
87
- fmin = self.fmin
88
- fmax = self.fmax
89
- clip_val = self.clip_val
90
-
91
- factor = 2 ** (keyshift / 12)
92
- n_fft_new = int(np.round(n_fft * factor))
93
- win_size_new = int(np.round(win_size * factor))
94
- hop_length_new = int(np.round(hop_length * speed))
95
- if not train:
96
- mel_basis = self.mel_basis
97
- hann_window = self.hann_window
98
- else:
99
- mel_basis = {}
100
- hann_window = {}
101
-
102
- if torch.min(y) < -1.:
103
- print('min value is ', torch.min(y))
104
- if torch.max(y) > 1.:
105
- print('max value is ', torch.max(y))
106
-
107
- mel_basis_key = str(fmax)+'_'+str(y.device)
108
- if mel_basis_key not in mel_basis:
109
- mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
110
- mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
111
-
112
- keyshift_key = str(keyshift)+'_'+str(y.device)
113
- if keyshift_key not in hann_window:
114
- hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
115
-
116
- pad_left = (win_size_new - hop_length_new) //2
117
- pad_right = max((win_size_new- hop_length_new + 1) //2, win_size_new - y.size(-1) - pad_left)
118
- if pad_right < y.size(-1):
119
- mode = 'reflect'
120
- else:
121
- mode = 'constant'
122
- y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode = mode)
123
- y = y.squeeze(1)
124
-
125
- spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key],
126
- center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
127
- spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
128
- if keyshift != 0:
129
- size = n_fft // 2 + 1
130
- resize = spec.size(1)
131
- if resize < size:
132
- spec = F.pad(spec, (0, 0, 0, size-resize))
133
- spec = spec[:, :size, :] * win_size / win_size_new
134
- spec = torch.matmul(mel_basis[mel_basis_key], spec)
135
- spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
136
- return spec
137
-
138
- def __call__(self, audiopath):
139
- audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
140
- spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
141
- return spect
142
-
143
- stft = STFT()
144
-
145
- #import fast_transformers.causal_product.causal_product_cuda
146
-
147
- def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None):
148
- b, h, *_ = data.shape
149
- # (batch size, head, length, model_dim)
150
-
151
- # normalize model dim
152
- data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.
153
-
154
- # what is ration?, projection_matrix.shape[0] --> 266
155
-
156
- ratio = (projection_matrix.shape[0] ** -0.5)
157
-
158
- projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
159
- projection = projection.type_as(data)
160
-
161
- #data_dash = w^T x
162
- data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)
163
-
164
-
165
- # diag_data = D**2
166
- diag_data = data ** 2
167
- diag_data = torch.sum(diag_data, dim=-1)
168
- diag_data = (diag_data / 2.0) * (data_normalizer ** 2)
169
- diag_data = diag_data.unsqueeze(dim=-1)
170
-
171
- #print ()
172
- if is_query:
173
- data_dash = ratio * (
174
- torch.exp(data_dash - diag_data -
175
- torch.max(data_dash, dim=-1, keepdim=True).values) + eps)
176
- else:
177
- data_dash = ratio * (
178
- torch.exp(data_dash - diag_data + eps))#- torch.max(data_dash)) + eps)
179
-
180
- return data_dash.type_as(data)
181
-
182
- def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None):
183
- unstructured_block = torch.randn((cols, cols), device = device)
184
- q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced')
185
- q, r = map(lambda t: t.to(device), (q, r))
186
-
187
- # proposed by @Parskatt
188
- # to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
189
- if qr_uniform_q:
190
- d = torch.diag(r, 0)
191
- q *= d.sign()
192
- return q.t()
193
- def exists(val):
194
- return val is not None
195
-
196
- def empty(tensor):
197
- return tensor.numel() == 0
198
-
199
- def default(val, d):
200
- return val if exists(val) else d
201
-
202
- def cast_tuple(val):
203
- return (val,) if not isinstance(val, tuple) else val
204
-
205
- class PCmer(nn.Module):
206
- """The encoder that is used in the Transformer model."""
207
-
208
- def __init__(self,
209
- num_layers,
210
- num_heads,
211
- dim_model,
212
- dim_keys,
213
- dim_values,
214
- residual_dropout,
215
- attention_dropout):
216
- super().__init__()
217
- self.num_layers = num_layers
218
- self.num_heads = num_heads
219
- self.dim_model = dim_model
220
- self.dim_values = dim_values
221
- self.dim_keys = dim_keys
222
- self.residual_dropout = residual_dropout
223
- self.attention_dropout = attention_dropout
224
-
225
- self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
226
-
227
- # METHODS ########################################################################################################
228
-
229
- def forward(self, phone, mask=None):
230
-
231
- # apply all layers to the input
232
- for (i, layer) in enumerate(self._layers):
233
- phone = layer(phone, mask)
234
- # provide the final sequence
235
- return phone
236
-
237
-
238
- # ==================================================================================================================== #
239
- # CLASS _ E N C O D E R L A Y E R #
240
- # ==================================================================================================================== #
241
-
242
-
243
- class _EncoderLayer(nn.Module):
244
- """One layer of the encoder.
245
-
246
- Attributes:
247
- attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
248
- feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
249
- """
250
-
251
- def __init__(self, parent: PCmer):
252
- """Creates a new instance of ``_EncoderLayer``.
253
-
254
- Args:
255
- parent (Encoder): The encoder that the layers is created for.
256
- """
257
- super().__init__()
258
-
259
-
260
- self.conformer = ConformerConvModule(parent.dim_model)
261
- self.norm = nn.LayerNorm(parent.dim_model)
262
- self.dropout = nn.Dropout(parent.residual_dropout)
263
-
264
- # selfatt -> fastatt: performer!
265
- self.attn = SelfAttention(dim = parent.dim_model,
266
- heads = parent.num_heads,
267
- causal = False)
268
-
269
- # METHODS ########################################################################################################
270
-
271
- def forward(self, phone, mask=None):
272
-
273
- # compute attention sub-layer
274
- phone = phone + (self.attn(self.norm(phone), mask=mask))
275
-
276
- phone = phone + (self.conformer(phone))
277
-
278
- return phone
279
-
280
- def calc_same_padding(kernel_size):
281
- pad = kernel_size // 2
282
- return (pad, pad - (kernel_size + 1) % 2)
283
-
284
- # helper classes
285
-
286
- class Swish(nn.Module):
287
- def forward(self, x):
288
- return x * x.sigmoid()
289
-
290
- class Transpose(nn.Module):
291
- def __init__(self, dims):
292
- super().__init__()
293
- assert len(dims) == 2, 'dims must be a tuple of two dimensions'
294
- self.dims = dims
295
-
296
- def forward(self, x):
297
- return x.transpose(*self.dims)
298
-
299
- class GLU(nn.Module):
300
- def __init__(self, dim):
301
- super().__init__()
302
- self.dim = dim
303
-
304
- def forward(self, x):
305
- out, gate = x.chunk(2, dim=self.dim)
306
- return out * gate.sigmoid()
307
-
308
- class DepthWiseConv1d(nn.Module):
309
- def __init__(self, chan_in, chan_out, kernel_size, padding):
310
- super().__init__()
311
- self.padding = padding
312
- self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in)
313
-
314
- def forward(self, x):
315
- x = F.pad(x, self.padding)
316
- return self.conv(x)
317
-
318
- class ConformerConvModule(nn.Module):
319
- def __init__(
320
- self,
321
- dim,
322
- causal = False,
323
- expansion_factor = 2,
324
- kernel_size = 31,
325
- dropout = 0.):
326
- super().__init__()
327
-
328
- inner_dim = dim * expansion_factor
329
- padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
330
-
331
- self.net = nn.Sequential(
332
- nn.LayerNorm(dim),
333
- Transpose((1, 2)),
334
- nn.Conv1d(dim, inner_dim * 2, 1),
335
- GLU(dim=1),
336
- DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding),
337
- #nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
338
- Swish(),
339
- nn.Conv1d(inner_dim, dim, 1),
340
- Transpose((1, 2)),
341
- nn.Dropout(dropout)
342
- )
343
-
344
- def forward(self, x):
345
- return self.net(x)
346
-
347
- def linear_attention(q, k, v):
348
- if v is None:
349
- #print (k.size(), q.size())
350
- out = torch.einsum('...ed,...nd->...ne', k, q)
351
- return out
352
-
353
- else:
354
- k_cumsum = k.sum(dim = -2)
355
- #k_cumsum = k.sum(dim = -2)
356
- D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8)
357
-
358
- context = torch.einsum('...nd,...ne->...de', k, v)
359
- #print ("TRUEEE: ", context.size(), q.size(), D_inv.size())
360
- out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv)
361
- return out
362
-
363
- def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None):
364
- nb_full_blocks = int(nb_rows / nb_columns)
365
- #print (nb_full_blocks)
366
- block_list = []
367
-
368
- for _ in range(nb_full_blocks):
369
- q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
370
- block_list.append(q)
371
- # block_list[n] is a orthogonal matrix ... (model_dim * model_dim)
372
- #print (block_list[0].size(), torch.einsum('...nd,...nd->...n', block_list[0], torch.roll(block_list[0],1,1)))
373
- #print (nb_rows, nb_full_blocks, nb_columns)
374
- remaining_rows = nb_rows - nb_full_blocks * nb_columns
375
- #print (remaining_rows)
376
- if remaining_rows > 0:
377
- q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
378
- #print (q[:remaining_rows].size())
379
- block_list.append(q[:remaining_rows])
380
-
381
- final_matrix = torch.cat(block_list)
382
-
383
- if scaling == 0:
384
- multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1)
385
- elif scaling == 1:
386
- multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device)
387
- else:
388
- raise ValueError(f'Invalid scaling {scaling}')
389
-
390
- return torch.diag(multiplier) @ final_matrix
391
-
392
- class FastAttention(nn.Module):
393
- def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False):
394
- super().__init__()
395
- nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
396
-
397
- self.dim_heads = dim_heads
398
- self.nb_features = nb_features
399
- self.ortho_scaling = ortho_scaling
400
-
401
- self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q)
402
- projection_matrix = self.create_projection()
403
- self.register_buffer('projection_matrix', projection_matrix)
404
-
405
- self.generalized_attention = generalized_attention
406
- self.kernel_fn = kernel_fn
407
-
408
- # if this is turned on, no projection will be used
409
- # queries and keys will be softmax-ed as in the original efficient attention paper
410
- self.no_projection = no_projection
411
-
412
- self.causal = causal
413
-
414
- @torch.no_grad()
415
- def redraw_projection_matrix(self):
416
- projections = self.create_projection()
417
- self.projection_matrix.copy_(projections)
418
- del projections
419
-
420
- def forward(self, q, k, v):
421
- device = q.device
422
-
423
- if self.no_projection:
424
- q = q.softmax(dim = -1)
425
- k = torch.exp(k) if self.causal else k.softmax(dim = -2)
426
- else:
427
- create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device)
428
-
429
- q = create_kernel(q, is_query = True)
430
- k = create_kernel(k, is_query = False)
431
-
432
- attn_fn = linear_attention if not self.causal else self.causal_linear_fn
433
- if v is None:
434
- out = attn_fn(q, k, None)
435
- return out
436
- else:
437
- out = attn_fn(q, k, v)
438
- return out
439
- class SelfAttention(nn.Module):
440
- def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False):
441
- super().__init__()
442
- assert dim % heads == 0, 'dimension must be divisible by number of heads'
443
- dim_head = default(dim_head, dim // heads)
444
- inner_dim = dim_head * heads
445
- self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection)
446
-
447
- self.heads = heads
448
- self.global_heads = heads - local_heads
449
- self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None
450
-
451
- #print (heads, nb_features, dim_head)
452
- #name_embedding = torch.zeros(110, heads, dim_head, dim_head)
453
- #self.name_embedding = nn.Parameter(name_embedding, requires_grad=True)
454
-
455
-
456
- self.to_q = nn.Linear(dim, inner_dim)
457
- self.to_k = nn.Linear(dim, inner_dim)
458
- self.to_v = nn.Linear(dim, inner_dim)
459
- self.to_out = nn.Linear(inner_dim, dim)
460
- self.dropout = nn.Dropout(dropout)
461
-
462
- @torch.no_grad()
463
- def redraw_projection_matrix(self):
464
- self.fast_attention.redraw_projection_matrix()
465
- #torch.nn.init.zeros_(self.name_embedding)
466
- #print (torch.sum(self.name_embedding))
467
- def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs):
468
- _, _, _, h, gh = *x.shape, self.heads, self.global_heads
469
-
470
- cross_attend = exists(context)
471
-
472
- context = default(context, x)
473
- context_mask = default(context_mask, mask) if not cross_attend else context_mask
474
- #print (torch.sum(self.name_embedding))
475
- q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
476
-
477
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
478
- (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
479
-
480
- attn_outs = []
481
- #print (name)
482
- #print (self.name_embedding[name].size())
483
- if not empty(q):
484
- if exists(context_mask):
485
- global_mask = context_mask[:, None, :, None]
486
- v.masked_fill_(~global_mask, 0.)
487
- if cross_attend:
488
- pass
489
- #print (torch.sum(self.name_embedding))
490
- #out = self.fast_attention(q,self.name_embedding[name],None)
491
- #print (torch.sum(self.name_embedding[...,-1:]))
492
- else:
493
- out = self.fast_attention(q, k, v)
494
- attn_outs.append(out)
495
-
496
- if not empty(lq):
497
- assert not cross_attend, 'local attention is not compatible with cross attention'
498
- out = self.local_attn(lq, lk, lv, input_mask = mask)
499
- attn_outs.append(out)
500
-
501
- out = torch.cat(attn_outs, dim = 1)
502
- out = rearrange(out, 'b h n d -> b n (h d)')
503
- out = self.to_out(out)
504
- return self.dropout(out)
505
-
506
- def l2_regularization(model, l2_alpha):
507
- l2_loss = []
508
- for module in model.modules():
509
- if type(module) is nn.Conv2d:
510
- l2_loss.append((module.weight ** 2).sum() / 2.0)
511
- return l2_alpha * sum(l2_loss)
512
-
513
-
514
- class FCPE(nn.Module):
515
- def __init__(
516
- self,
517
- input_channel=128,
518
- out_dims=360,
519
- n_layers=12,
520
- n_chans=512,
521
- use_siren=False,
522
- use_full=False,
523
- loss_mse_scale=10,
524
- loss_l2_regularization=False,
525
- loss_l2_regularization_scale=1,
526
- loss_grad1_mse=False,
527
- loss_grad1_mse_scale=1,
528
- f0_max=1975.5,
529
- f0_min=32.70,
530
- confidence=False,
531
- threshold=0.05,
532
- use_input_conv=True
533
- ):
534
- super().__init__()
535
- if use_siren is True:
536
- raise ValueError("Siren is not supported yet.")
537
- if use_full is True:
538
- raise ValueError("Full model is not supported yet.")
539
-
540
- self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
541
- self.loss_l2_regularization = loss_l2_regularization if (loss_l2_regularization is not None) else False
542
- self.loss_l2_regularization_scale = loss_l2_regularization_scale if (loss_l2_regularization_scale
543
- is not None) else 1
544
- self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
545
- self.loss_grad1_mse_scale = loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1
546
- self.f0_max = f0_max if (f0_max is not None) else 1975.5
547
- self.f0_min = f0_min if (f0_min is not None) else 32.70
548
- self.confidence = confidence if (confidence is not None) else False
549
- self.threshold = threshold if (threshold is not None) else 0.05
550
- self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
551
-
552
- self.cent_table_b = torch.Tensor(
553
- np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0],
554
- out_dims))
555
- self.register_buffer("cent_table", self.cent_table_b)
556
-
557
- # conv in stack
558
- _leaky = nn.LeakyReLU()
559
- self.stack = nn.Sequential(
560
- nn.Conv1d(input_channel, n_chans, 3, 1, 1),
561
- nn.GroupNorm(4, n_chans),
562
- _leaky,
563
- nn.Conv1d(n_chans, n_chans, 3, 1, 1))
564
-
565
- # transformer
566
- self.decoder = PCmer(
567
- num_layers=n_layers,
568
- num_heads=8,
569
- dim_model=n_chans,
570
- dim_keys=n_chans,
571
- dim_values=n_chans,
572
- residual_dropout=0.1,
573
- attention_dropout=0.1)
574
- self.norm = nn.LayerNorm(n_chans)
575
-
576
- # out
577
- self.n_out = out_dims
578
- self.dense_out = weight_norm(
579
- nn.Linear(n_chans, self.n_out))
580
-
581
- def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder = "local_argmax"):
582
- """
583
- input:
584
- B x n_frames x n_unit
585
- return:
586
- dict of B x n_frames x feat
587
- """
588
- if cdecoder == "argmax":
589
- self.cdecoder = self.cents_decoder
590
- elif cdecoder == "local_argmax":
591
- self.cdecoder = self.cents_local_decoder
592
- if self.use_input_conv:
593
- x = self.stack(mel.transpose(1, 2)).transpose(1, 2)
594
- else:
595
- x = mel
596
- x = self.decoder(x)
597
- x = self.norm(x)
598
- x = self.dense_out(x) # [B,N,D]
599
- x = torch.sigmoid(x)
600
- if not infer:
601
- gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1]
602
- gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim]
603
- loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, gt_cent_f0) # bce loss
604
- # l2 regularization
605
- if self.loss_l2_regularization:
606
- loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale)
607
- x = loss_all
608
- if infer:
609
- x = self.cdecoder(x)
610
- x = self.cent_to_f0(x)
611
- if not return_hz_f0:
612
- x = (1 + x / 700).log()
613
- return x
614
-
615
- def cents_decoder(self, y, mask=True):
616
- B, N, _ = y.size()
617
- ci = self.cent_table[None, None, :].expand(B, N, -1)
618
- rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True) # cents: [B,N,1]
619
- if mask:
620
- confident = torch.max(y, dim=-1, keepdim=True)[0]
621
- confident_mask = torch.ones_like(confident)
622
- confident_mask[confident <= self.threshold] = float("-INF")
623
- rtn = rtn * confident_mask
624
- if self.confidence:
625
- return rtn, confident
626
- else:
627
- return rtn
628
-
629
- def cents_local_decoder(self, y, mask=True):
630
- B, N, _ = y.size()
631
- ci = self.cent_table[None, None, :].expand(B, N, -1)
632
- confident, max_index = torch.max(y, dim=-1, keepdim=True)
633
- local_argmax_index = torch.arange(0,9).to(max_index.device) + (max_index - 4)
634
- local_argmax_index[local_argmax_index<0] = 0
635
- local_argmax_index[local_argmax_index>=self.n_out] = self.n_out - 1
636
- ci_l = torch.gather(ci,-1,local_argmax_index)
637
- y_l = torch.gather(y,-1,local_argmax_index)
638
- rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True) # cents: [B,N,1]
639
- if mask:
640
- confident_mask = torch.ones_like(confident)
641
- confident_mask[confident <= self.threshold] = float("-INF")
642
- rtn = rtn * confident_mask
643
- if self.confidence:
644
- return rtn, confident
645
- else:
646
- return rtn
647
-
648
- def cent_to_f0(self, cent):
649
- return 10. * 2 ** (cent / 1200.)
650
-
651
- def f0_to_cent(self, f0):
652
- return 1200. * torch.log2(f0 / 10.)
653
-
654
- def gaussian_blurred_cent(self, cents): # cents: [B,N,1]
655
- mask = (cents > 0.1) & (cents < (1200. * np.log2(self.f0_max / 10.)))
656
- B, N, _ = cents.size()
657
- ci = self.cent_table[None, None, :].expand(B, N, -1)
658
- return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()
659
-
660
-
661
- class FCPEInfer:
662
- def __init__(self, model_path, device=None, dtype=torch.float32):
663
- if device is None:
664
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
665
- self.device = device
666
- ckpt = torch.load(model_path, map_location=torch.device(self.device))
667
- self.args = DotDict(ckpt["config"])
668
- self.dtype = dtype
669
- model = FCPE(
670
- input_channel=self.args.model.input_channel,
671
- out_dims=self.args.model.out_dims,
672
- n_layers=self.args.model.n_layers,
673
- n_chans=self.args.model.n_chans,
674
- use_siren=self.args.model.use_siren,
675
- use_full=self.args.model.use_full,
676
- loss_mse_scale=self.args.loss.loss_mse_scale,
677
- loss_l2_regularization=self.args.loss.loss_l2_regularization,
678
- loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale,
679
- loss_grad1_mse=self.args.loss.loss_grad1_mse,
680
- loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale,
681
- f0_max=self.args.model.f0_max,
682
- f0_min=self.args.model.f0_min,
683
- confidence=self.args.model.confidence,
684
- )
685
- model.to(self.device).to(self.dtype)
686
- model.load_state_dict(ckpt['model'])
687
- model.eval()
688
- self.model = model
689
- self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device)
690
-
691
- @torch.no_grad()
692
- def __call__(self, audio, sr, threshold=0.05):
693
- self.model.threshold = threshold
694
- audio = audio[None,:]
695
- mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
696
- f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
697
- return f0
698
-
699
-
700
- class Wav2Mel:
701
-
702
- def __init__(self, args, device=None, dtype=torch.float32):
703
- # self.args = args
704
- self.sampling_rate = args.mel.sampling_rate
705
- self.hop_size = args.mel.hop_size
706
- if device is None:
707
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
708
- self.device = device
709
- self.dtype = dtype
710
- self.stft = STFT(
711
- args.mel.sampling_rate,
712
- args.mel.num_mels,
713
- args.mel.n_fft,
714
- args.mel.win_size,
715
- args.mel.hop_size,
716
- args.mel.fmin,
717
- args.mel.fmax
718
- )
719
- self.resample_kernel = {}
720
-
721
- def extract_nvstft(self, audio, keyshift=0, train=False):
722
- mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2) # B, n_frames, bins
723
- return mel
724
-
725
- def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
726
- audio = audio.to(self.dtype).to(self.device)
727
- # resample
728
- if sample_rate == self.sampling_rate:
729
- audio_res = audio
730
- else:
731
- key_str = str(sample_rate)
732
- if key_str not in self.resample_kernel:
733
- self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate, lowpass_filter_width=128)
734
- self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device)
735
- audio_res = self.resample_kernel[key_str](audio)
736
-
737
- # extract
738
- mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) # B, n_frames, bins
739
- n_frames = int(audio.shape[1] // self.hop_size) + 1
740
- if n_frames > int(mel.shape[1]):
741
- mel = torch.cat((mel, mel[:, -1:, :]), 1)
742
- if n_frames < int(mel.shape[1]):
743
- mel = mel[:, :n_frames, :]
744
- return mel
745
-
746
- def __call__(self, audio, sample_rate, keyshift=0, train=False):
747
- return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)
748
-
749
-
750
- class DotDict(dict):
751
- def __getattr__(*args):
752
- val = dict.get(*args)
753
- return DotDict(val) if type(val) is dict else val
754
-
755
- __setattr__ = dict.__setitem__
756
- __delattr__ = dict.__delitem__
757
-
758
- class F0Predictor(object):
759
- def compute_f0(self,wav,p_len):
760
- '''
761
- input: wav:[signal_length]
762
- p_len:int
763
- output: f0:[signal_length//hop_length]
764
- '''
765
- pass
766
-
767
- def compute_f0_uv(self,wav,p_len):
768
- '''
769
- input: wav:[signal_length]
770
- p_len:int
771
- output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
772
- '''
773
- pass
774
-
775
- class FCPE(F0Predictor):
776
- def __init__(self, model_path, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sampling_rate=44100,
777
- threshold=0.05):
778
- self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype)
779
- self.hop_length = hop_length
780
- self.f0_min = f0_min
781
- self.f0_max = f0_max
782
- if device is None:
783
- self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
784
- else:
785
- self.device = device
786
- self.threshold = threshold
787
- self.sampling_rate = sampling_rate
788
- self.dtype = dtype
789
- self.name = "fcpe"
790
-
791
- def repeat_expand(
792
- self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
793
- ):
794
- ndim = content.ndim
795
-
796
- if content.ndim == 1:
797
- content = content[None, None]
798
- elif content.ndim == 2:
799
- content = content[None]
800
-
801
- assert content.ndim == 3
802
-
803
- is_np = isinstance(content, np.ndarray)
804
- if is_np:
805
- content = torch.from_numpy(content)
806
-
807
- results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
808
-
809
- if is_np:
810
- results = results.numpy()
811
-
812
- if ndim == 1:
813
- return results[0, 0]
814
- elif ndim == 2:
815
- return results[0]
816
-
817
- def post_process(self, x, sampling_rate, f0, pad_to):
818
- if isinstance(f0, np.ndarray):
819
- f0 = torch.from_numpy(f0).float().to(x.device)
820
-
821
- if pad_to is None:
822
- return f0
823
-
824
- f0 = self.repeat_expand(f0, pad_to)
825
-
826
- vuv_vector = torch.zeros_like(f0)
827
- vuv_vector[f0 > 0.0] = 1.0
828
- vuv_vector[f0 <= 0.0] = 0.0
829
-
830
- # 去掉0频率, 并线性插值
831
- nzindex = torch.nonzero(f0).squeeze()
832
- f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
833
- time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
834
- time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
835
-
836
- vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]
837
-
838
- if f0.shape[0] <= 0:
839
- return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(), vuv_vector.cpu().numpy()
840
- if f0.shape[0] == 1:
841
- return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[
842
- 0]).cpu().numpy(), vuv_vector.cpu().numpy()
843
-
844
- # 大概可以用 torch 重写?
845
- f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
846
- # vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
847
-
848
- return f0, vuv_vector.cpu().numpy()
849
-
850
- def compute_f0(self, wav, p_len=None):
851
- x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
852
- if p_len is None:
853
- print("fcpe p_len is None")
854
- p_len = x.shape[0] // self.hop_length
855
- #else:
856
- # assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
857
- f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
858
- if torch.all(f0 == 0):
859
- rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
860
- return rtn, rtn
861
- return self.post_process(x, self.sampling_rate, f0, p_len)[0]
862
-
863
- def compute_f0_uv(self, wav, p_len=None):
864
- x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
865
- if p_len is None:
866
- p_len = x.shape[0] // self.hop_length
867
- #else:
868
- # assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
869
- f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
870
- if torch.all(f0 == 0):
871
- rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
872
- return rtn, rtn
873
- return self.post_process(x, self.sampling_rate, f0, p_len)