Delete lib/infer_libs/fcpe.py
Browse files- lib/infer_libs/fcpe.py +0 -873
lib/infer_libs/fcpe.py
DELETED
@@ -1,873 +0,0 @@
|
|
1 |
-
from typing import Union
|
2 |
-
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
from torch.nn.utils import weight_norm
|
8 |
-
from torchaudio.transforms import Resample
|
9 |
-
import os
|
10 |
-
import librosa
|
11 |
-
import soundfile as sf
|
12 |
-
import torch.utils.data
|
13 |
-
from librosa.filters import mel as librosa_mel_fn
|
14 |
-
import math
|
15 |
-
from functools import partial
|
16 |
-
|
17 |
-
from einops import rearrange, repeat
|
18 |
-
from local_attention import LocalAttention
|
19 |
-
from torch import nn
|
20 |
-
|
21 |
-
os.environ["LRU_CACHE_CAPACITY"] = "3"
|
22 |
-
|
23 |
-
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
|
24 |
-
sampling_rate = None
|
25 |
-
try:
|
26 |
-
data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
|
27 |
-
except Exception as ex:
|
28 |
-
print(f"'{full_path}' failed to load.\nException:")
|
29 |
-
print(ex)
|
30 |
-
if return_empty_on_exception:
|
31 |
-
return [], sampling_rate or target_sr or 48000
|
32 |
-
else:
|
33 |
-
raise Exception(ex)
|
34 |
-
|
35 |
-
if len(data.shape) > 1:
|
36 |
-
data = data[:, 0]
|
37 |
-
assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
|
38 |
-
|
39 |
-
if np.issubdtype(data.dtype, np.integer): # if audio data is type int
|
40 |
-
max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
|
41 |
-
else: # if audio data is type fp32
|
42 |
-
max_mag = max(np.amax(data), -np.amin(data))
|
43 |
-
max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
|
44 |
-
|
45 |
-
data = torch.FloatTensor(data.astype(np.float32))/max_mag
|
46 |
-
|
47 |
-
if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
|
48 |
-
return [], sampling_rate or target_sr or 48000
|
49 |
-
if target_sr is not None and sampling_rate != target_sr:
|
50 |
-
data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
|
51 |
-
sampling_rate = target_sr
|
52 |
-
|
53 |
-
return data, sampling_rate
|
54 |
-
|
55 |
-
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
56 |
-
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
57 |
-
|
58 |
-
def dynamic_range_decompression(x, C=1):
|
59 |
-
return np.exp(x) / C
|
60 |
-
|
61 |
-
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
62 |
-
return torch.log(torch.clamp(x, min=clip_val) * C)
|
63 |
-
|
64 |
-
def dynamic_range_decompression_torch(x, C=1):
|
65 |
-
return torch.exp(x) / C
|
66 |
-
|
67 |
-
class STFT():
|
68 |
-
def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
|
69 |
-
self.target_sr = sr
|
70 |
-
|
71 |
-
self.n_mels = n_mels
|
72 |
-
self.n_fft = n_fft
|
73 |
-
self.win_size = win_size
|
74 |
-
self.hop_length = hop_length
|
75 |
-
self.fmin = fmin
|
76 |
-
self.fmax = fmax
|
77 |
-
self.clip_val = clip_val
|
78 |
-
self.mel_basis = {}
|
79 |
-
self.hann_window = {}
|
80 |
-
|
81 |
-
def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
|
82 |
-
sampling_rate = self.target_sr
|
83 |
-
n_mels = self.n_mels
|
84 |
-
n_fft = self.n_fft
|
85 |
-
win_size = self.win_size
|
86 |
-
hop_length = self.hop_length
|
87 |
-
fmin = self.fmin
|
88 |
-
fmax = self.fmax
|
89 |
-
clip_val = self.clip_val
|
90 |
-
|
91 |
-
factor = 2 ** (keyshift / 12)
|
92 |
-
n_fft_new = int(np.round(n_fft * factor))
|
93 |
-
win_size_new = int(np.round(win_size * factor))
|
94 |
-
hop_length_new = int(np.round(hop_length * speed))
|
95 |
-
if not train:
|
96 |
-
mel_basis = self.mel_basis
|
97 |
-
hann_window = self.hann_window
|
98 |
-
else:
|
99 |
-
mel_basis = {}
|
100 |
-
hann_window = {}
|
101 |
-
|
102 |
-
if torch.min(y) < -1.:
|
103 |
-
print('min value is ', torch.min(y))
|
104 |
-
if torch.max(y) > 1.:
|
105 |
-
print('max value is ', torch.max(y))
|
106 |
-
|
107 |
-
mel_basis_key = str(fmax)+'_'+str(y.device)
|
108 |
-
if mel_basis_key not in mel_basis:
|
109 |
-
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
|
110 |
-
mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
|
111 |
-
|
112 |
-
keyshift_key = str(keyshift)+'_'+str(y.device)
|
113 |
-
if keyshift_key not in hann_window:
|
114 |
-
hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
|
115 |
-
|
116 |
-
pad_left = (win_size_new - hop_length_new) //2
|
117 |
-
pad_right = max((win_size_new- hop_length_new + 1) //2, win_size_new - y.size(-1) - pad_left)
|
118 |
-
if pad_right < y.size(-1):
|
119 |
-
mode = 'reflect'
|
120 |
-
else:
|
121 |
-
mode = 'constant'
|
122 |
-
y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode = mode)
|
123 |
-
y = y.squeeze(1)
|
124 |
-
|
125 |
-
spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key],
|
126 |
-
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
|
127 |
-
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
|
128 |
-
if keyshift != 0:
|
129 |
-
size = n_fft // 2 + 1
|
130 |
-
resize = spec.size(1)
|
131 |
-
if resize < size:
|
132 |
-
spec = F.pad(spec, (0, 0, 0, size-resize))
|
133 |
-
spec = spec[:, :size, :] * win_size / win_size_new
|
134 |
-
spec = torch.matmul(mel_basis[mel_basis_key], spec)
|
135 |
-
spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
|
136 |
-
return spec
|
137 |
-
|
138 |
-
def __call__(self, audiopath):
|
139 |
-
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
|
140 |
-
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
|
141 |
-
return spect
|
142 |
-
|
143 |
-
stft = STFT()
|
144 |
-
|
145 |
-
#import fast_transformers.causal_product.causal_product_cuda
|
146 |
-
|
147 |
-
def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None):
|
148 |
-
b, h, *_ = data.shape
|
149 |
-
# (batch size, head, length, model_dim)
|
150 |
-
|
151 |
-
# normalize model dim
|
152 |
-
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.
|
153 |
-
|
154 |
-
# what is ration?, projection_matrix.shape[0] --> 266
|
155 |
-
|
156 |
-
ratio = (projection_matrix.shape[0] ** -0.5)
|
157 |
-
|
158 |
-
projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
|
159 |
-
projection = projection.type_as(data)
|
160 |
-
|
161 |
-
#data_dash = w^T x
|
162 |
-
data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)
|
163 |
-
|
164 |
-
|
165 |
-
# diag_data = D**2
|
166 |
-
diag_data = data ** 2
|
167 |
-
diag_data = torch.sum(diag_data, dim=-1)
|
168 |
-
diag_data = (diag_data / 2.0) * (data_normalizer ** 2)
|
169 |
-
diag_data = diag_data.unsqueeze(dim=-1)
|
170 |
-
|
171 |
-
#print ()
|
172 |
-
if is_query:
|
173 |
-
data_dash = ratio * (
|
174 |
-
torch.exp(data_dash - diag_data -
|
175 |
-
torch.max(data_dash, dim=-1, keepdim=True).values) + eps)
|
176 |
-
else:
|
177 |
-
data_dash = ratio * (
|
178 |
-
torch.exp(data_dash - diag_data + eps))#- torch.max(data_dash)) + eps)
|
179 |
-
|
180 |
-
return data_dash.type_as(data)
|
181 |
-
|
182 |
-
def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None):
|
183 |
-
unstructured_block = torch.randn((cols, cols), device = device)
|
184 |
-
q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced')
|
185 |
-
q, r = map(lambda t: t.to(device), (q, r))
|
186 |
-
|
187 |
-
# proposed by @Parskatt
|
188 |
-
# to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
|
189 |
-
if qr_uniform_q:
|
190 |
-
d = torch.diag(r, 0)
|
191 |
-
q *= d.sign()
|
192 |
-
return q.t()
|
193 |
-
def exists(val):
|
194 |
-
return val is not None
|
195 |
-
|
196 |
-
def empty(tensor):
|
197 |
-
return tensor.numel() == 0
|
198 |
-
|
199 |
-
def default(val, d):
|
200 |
-
return val if exists(val) else d
|
201 |
-
|
202 |
-
def cast_tuple(val):
|
203 |
-
return (val,) if not isinstance(val, tuple) else val
|
204 |
-
|
205 |
-
class PCmer(nn.Module):
|
206 |
-
"""The encoder that is used in the Transformer model."""
|
207 |
-
|
208 |
-
def __init__(self,
|
209 |
-
num_layers,
|
210 |
-
num_heads,
|
211 |
-
dim_model,
|
212 |
-
dim_keys,
|
213 |
-
dim_values,
|
214 |
-
residual_dropout,
|
215 |
-
attention_dropout):
|
216 |
-
super().__init__()
|
217 |
-
self.num_layers = num_layers
|
218 |
-
self.num_heads = num_heads
|
219 |
-
self.dim_model = dim_model
|
220 |
-
self.dim_values = dim_values
|
221 |
-
self.dim_keys = dim_keys
|
222 |
-
self.residual_dropout = residual_dropout
|
223 |
-
self.attention_dropout = attention_dropout
|
224 |
-
|
225 |
-
self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
|
226 |
-
|
227 |
-
# METHODS ########################################################################################################
|
228 |
-
|
229 |
-
def forward(self, phone, mask=None):
|
230 |
-
|
231 |
-
# apply all layers to the input
|
232 |
-
for (i, layer) in enumerate(self._layers):
|
233 |
-
phone = layer(phone, mask)
|
234 |
-
# provide the final sequence
|
235 |
-
return phone
|
236 |
-
|
237 |
-
|
238 |
-
# ==================================================================================================================== #
|
239 |
-
# CLASS _ E N C O D E R L A Y E R #
|
240 |
-
# ==================================================================================================================== #
|
241 |
-
|
242 |
-
|
243 |
-
class _EncoderLayer(nn.Module):
|
244 |
-
"""One layer of the encoder.
|
245 |
-
|
246 |
-
Attributes:
|
247 |
-
attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
|
248 |
-
feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
|
249 |
-
"""
|
250 |
-
|
251 |
-
def __init__(self, parent: PCmer):
|
252 |
-
"""Creates a new instance of ``_EncoderLayer``.
|
253 |
-
|
254 |
-
Args:
|
255 |
-
parent (Encoder): The encoder that the layers is created for.
|
256 |
-
"""
|
257 |
-
super().__init__()
|
258 |
-
|
259 |
-
|
260 |
-
self.conformer = ConformerConvModule(parent.dim_model)
|
261 |
-
self.norm = nn.LayerNorm(parent.dim_model)
|
262 |
-
self.dropout = nn.Dropout(parent.residual_dropout)
|
263 |
-
|
264 |
-
# selfatt -> fastatt: performer!
|
265 |
-
self.attn = SelfAttention(dim = parent.dim_model,
|
266 |
-
heads = parent.num_heads,
|
267 |
-
causal = False)
|
268 |
-
|
269 |
-
# METHODS ########################################################################################################
|
270 |
-
|
271 |
-
def forward(self, phone, mask=None):
|
272 |
-
|
273 |
-
# compute attention sub-layer
|
274 |
-
phone = phone + (self.attn(self.norm(phone), mask=mask))
|
275 |
-
|
276 |
-
phone = phone + (self.conformer(phone))
|
277 |
-
|
278 |
-
return phone
|
279 |
-
|
280 |
-
def calc_same_padding(kernel_size):
|
281 |
-
pad = kernel_size // 2
|
282 |
-
return (pad, pad - (kernel_size + 1) % 2)
|
283 |
-
|
284 |
-
# helper classes
|
285 |
-
|
286 |
-
class Swish(nn.Module):
|
287 |
-
def forward(self, x):
|
288 |
-
return x * x.sigmoid()
|
289 |
-
|
290 |
-
class Transpose(nn.Module):
|
291 |
-
def __init__(self, dims):
|
292 |
-
super().__init__()
|
293 |
-
assert len(dims) == 2, 'dims must be a tuple of two dimensions'
|
294 |
-
self.dims = dims
|
295 |
-
|
296 |
-
def forward(self, x):
|
297 |
-
return x.transpose(*self.dims)
|
298 |
-
|
299 |
-
class GLU(nn.Module):
|
300 |
-
def __init__(self, dim):
|
301 |
-
super().__init__()
|
302 |
-
self.dim = dim
|
303 |
-
|
304 |
-
def forward(self, x):
|
305 |
-
out, gate = x.chunk(2, dim=self.dim)
|
306 |
-
return out * gate.sigmoid()
|
307 |
-
|
308 |
-
class DepthWiseConv1d(nn.Module):
|
309 |
-
def __init__(self, chan_in, chan_out, kernel_size, padding):
|
310 |
-
super().__init__()
|
311 |
-
self.padding = padding
|
312 |
-
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in)
|
313 |
-
|
314 |
-
def forward(self, x):
|
315 |
-
x = F.pad(x, self.padding)
|
316 |
-
return self.conv(x)
|
317 |
-
|
318 |
-
class ConformerConvModule(nn.Module):
|
319 |
-
def __init__(
|
320 |
-
self,
|
321 |
-
dim,
|
322 |
-
causal = False,
|
323 |
-
expansion_factor = 2,
|
324 |
-
kernel_size = 31,
|
325 |
-
dropout = 0.):
|
326 |
-
super().__init__()
|
327 |
-
|
328 |
-
inner_dim = dim * expansion_factor
|
329 |
-
padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
|
330 |
-
|
331 |
-
self.net = nn.Sequential(
|
332 |
-
nn.LayerNorm(dim),
|
333 |
-
Transpose((1, 2)),
|
334 |
-
nn.Conv1d(dim, inner_dim * 2, 1),
|
335 |
-
GLU(dim=1),
|
336 |
-
DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding),
|
337 |
-
#nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
|
338 |
-
Swish(),
|
339 |
-
nn.Conv1d(inner_dim, dim, 1),
|
340 |
-
Transpose((1, 2)),
|
341 |
-
nn.Dropout(dropout)
|
342 |
-
)
|
343 |
-
|
344 |
-
def forward(self, x):
|
345 |
-
return self.net(x)
|
346 |
-
|
347 |
-
def linear_attention(q, k, v):
|
348 |
-
if v is None:
|
349 |
-
#print (k.size(), q.size())
|
350 |
-
out = torch.einsum('...ed,...nd->...ne', k, q)
|
351 |
-
return out
|
352 |
-
|
353 |
-
else:
|
354 |
-
k_cumsum = k.sum(dim = -2)
|
355 |
-
#k_cumsum = k.sum(dim = -2)
|
356 |
-
D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8)
|
357 |
-
|
358 |
-
context = torch.einsum('...nd,...ne->...de', k, v)
|
359 |
-
#print ("TRUEEE: ", context.size(), q.size(), D_inv.size())
|
360 |
-
out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv)
|
361 |
-
return out
|
362 |
-
|
363 |
-
def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None):
|
364 |
-
nb_full_blocks = int(nb_rows / nb_columns)
|
365 |
-
#print (nb_full_blocks)
|
366 |
-
block_list = []
|
367 |
-
|
368 |
-
for _ in range(nb_full_blocks):
|
369 |
-
q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
|
370 |
-
block_list.append(q)
|
371 |
-
# block_list[n] is a orthogonal matrix ... (model_dim * model_dim)
|
372 |
-
#print (block_list[0].size(), torch.einsum('...nd,...nd->...n', block_list[0], torch.roll(block_list[0],1,1)))
|
373 |
-
#print (nb_rows, nb_full_blocks, nb_columns)
|
374 |
-
remaining_rows = nb_rows - nb_full_blocks * nb_columns
|
375 |
-
#print (remaining_rows)
|
376 |
-
if remaining_rows > 0:
|
377 |
-
q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
|
378 |
-
#print (q[:remaining_rows].size())
|
379 |
-
block_list.append(q[:remaining_rows])
|
380 |
-
|
381 |
-
final_matrix = torch.cat(block_list)
|
382 |
-
|
383 |
-
if scaling == 0:
|
384 |
-
multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1)
|
385 |
-
elif scaling == 1:
|
386 |
-
multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device)
|
387 |
-
else:
|
388 |
-
raise ValueError(f'Invalid scaling {scaling}')
|
389 |
-
|
390 |
-
return torch.diag(multiplier) @ final_matrix
|
391 |
-
|
392 |
-
class FastAttention(nn.Module):
|
393 |
-
def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False):
|
394 |
-
super().__init__()
|
395 |
-
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
|
396 |
-
|
397 |
-
self.dim_heads = dim_heads
|
398 |
-
self.nb_features = nb_features
|
399 |
-
self.ortho_scaling = ortho_scaling
|
400 |
-
|
401 |
-
self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q)
|
402 |
-
projection_matrix = self.create_projection()
|
403 |
-
self.register_buffer('projection_matrix', projection_matrix)
|
404 |
-
|
405 |
-
self.generalized_attention = generalized_attention
|
406 |
-
self.kernel_fn = kernel_fn
|
407 |
-
|
408 |
-
# if this is turned on, no projection will be used
|
409 |
-
# queries and keys will be softmax-ed as in the original efficient attention paper
|
410 |
-
self.no_projection = no_projection
|
411 |
-
|
412 |
-
self.causal = causal
|
413 |
-
|
414 |
-
@torch.no_grad()
|
415 |
-
def redraw_projection_matrix(self):
|
416 |
-
projections = self.create_projection()
|
417 |
-
self.projection_matrix.copy_(projections)
|
418 |
-
del projections
|
419 |
-
|
420 |
-
def forward(self, q, k, v):
|
421 |
-
device = q.device
|
422 |
-
|
423 |
-
if self.no_projection:
|
424 |
-
q = q.softmax(dim = -1)
|
425 |
-
k = torch.exp(k) if self.causal else k.softmax(dim = -2)
|
426 |
-
else:
|
427 |
-
create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device)
|
428 |
-
|
429 |
-
q = create_kernel(q, is_query = True)
|
430 |
-
k = create_kernel(k, is_query = False)
|
431 |
-
|
432 |
-
attn_fn = linear_attention if not self.causal else self.causal_linear_fn
|
433 |
-
if v is None:
|
434 |
-
out = attn_fn(q, k, None)
|
435 |
-
return out
|
436 |
-
else:
|
437 |
-
out = attn_fn(q, k, v)
|
438 |
-
return out
|
439 |
-
class SelfAttention(nn.Module):
|
440 |
-
def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False):
|
441 |
-
super().__init__()
|
442 |
-
assert dim % heads == 0, 'dimension must be divisible by number of heads'
|
443 |
-
dim_head = default(dim_head, dim // heads)
|
444 |
-
inner_dim = dim_head * heads
|
445 |
-
self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection)
|
446 |
-
|
447 |
-
self.heads = heads
|
448 |
-
self.global_heads = heads - local_heads
|
449 |
-
self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None
|
450 |
-
|
451 |
-
#print (heads, nb_features, dim_head)
|
452 |
-
#name_embedding = torch.zeros(110, heads, dim_head, dim_head)
|
453 |
-
#self.name_embedding = nn.Parameter(name_embedding, requires_grad=True)
|
454 |
-
|
455 |
-
|
456 |
-
self.to_q = nn.Linear(dim, inner_dim)
|
457 |
-
self.to_k = nn.Linear(dim, inner_dim)
|
458 |
-
self.to_v = nn.Linear(dim, inner_dim)
|
459 |
-
self.to_out = nn.Linear(inner_dim, dim)
|
460 |
-
self.dropout = nn.Dropout(dropout)
|
461 |
-
|
462 |
-
@torch.no_grad()
|
463 |
-
def redraw_projection_matrix(self):
|
464 |
-
self.fast_attention.redraw_projection_matrix()
|
465 |
-
#torch.nn.init.zeros_(self.name_embedding)
|
466 |
-
#print (torch.sum(self.name_embedding))
|
467 |
-
def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs):
|
468 |
-
_, _, _, h, gh = *x.shape, self.heads, self.global_heads
|
469 |
-
|
470 |
-
cross_attend = exists(context)
|
471 |
-
|
472 |
-
context = default(context, x)
|
473 |
-
context_mask = default(context_mask, mask) if not cross_attend else context_mask
|
474 |
-
#print (torch.sum(self.name_embedding))
|
475 |
-
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
|
476 |
-
|
477 |
-
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
478 |
-
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
|
479 |
-
|
480 |
-
attn_outs = []
|
481 |
-
#print (name)
|
482 |
-
#print (self.name_embedding[name].size())
|
483 |
-
if not empty(q):
|
484 |
-
if exists(context_mask):
|
485 |
-
global_mask = context_mask[:, None, :, None]
|
486 |
-
v.masked_fill_(~global_mask, 0.)
|
487 |
-
if cross_attend:
|
488 |
-
pass
|
489 |
-
#print (torch.sum(self.name_embedding))
|
490 |
-
#out = self.fast_attention(q,self.name_embedding[name],None)
|
491 |
-
#print (torch.sum(self.name_embedding[...,-1:]))
|
492 |
-
else:
|
493 |
-
out = self.fast_attention(q, k, v)
|
494 |
-
attn_outs.append(out)
|
495 |
-
|
496 |
-
if not empty(lq):
|
497 |
-
assert not cross_attend, 'local attention is not compatible with cross attention'
|
498 |
-
out = self.local_attn(lq, lk, lv, input_mask = mask)
|
499 |
-
attn_outs.append(out)
|
500 |
-
|
501 |
-
out = torch.cat(attn_outs, dim = 1)
|
502 |
-
out = rearrange(out, 'b h n d -> b n (h d)')
|
503 |
-
out = self.to_out(out)
|
504 |
-
return self.dropout(out)
|
505 |
-
|
506 |
-
def l2_regularization(model, l2_alpha):
|
507 |
-
l2_loss = []
|
508 |
-
for module in model.modules():
|
509 |
-
if type(module) is nn.Conv2d:
|
510 |
-
l2_loss.append((module.weight ** 2).sum() / 2.0)
|
511 |
-
return l2_alpha * sum(l2_loss)
|
512 |
-
|
513 |
-
|
514 |
-
class FCPE(nn.Module):
|
515 |
-
def __init__(
|
516 |
-
self,
|
517 |
-
input_channel=128,
|
518 |
-
out_dims=360,
|
519 |
-
n_layers=12,
|
520 |
-
n_chans=512,
|
521 |
-
use_siren=False,
|
522 |
-
use_full=False,
|
523 |
-
loss_mse_scale=10,
|
524 |
-
loss_l2_regularization=False,
|
525 |
-
loss_l2_regularization_scale=1,
|
526 |
-
loss_grad1_mse=False,
|
527 |
-
loss_grad1_mse_scale=1,
|
528 |
-
f0_max=1975.5,
|
529 |
-
f0_min=32.70,
|
530 |
-
confidence=False,
|
531 |
-
threshold=0.05,
|
532 |
-
use_input_conv=True
|
533 |
-
):
|
534 |
-
super().__init__()
|
535 |
-
if use_siren is True:
|
536 |
-
raise ValueError("Siren is not supported yet.")
|
537 |
-
if use_full is True:
|
538 |
-
raise ValueError("Full model is not supported yet.")
|
539 |
-
|
540 |
-
self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
|
541 |
-
self.loss_l2_regularization = loss_l2_regularization if (loss_l2_regularization is not None) else False
|
542 |
-
self.loss_l2_regularization_scale = loss_l2_regularization_scale if (loss_l2_regularization_scale
|
543 |
-
is not None) else 1
|
544 |
-
self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
|
545 |
-
self.loss_grad1_mse_scale = loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1
|
546 |
-
self.f0_max = f0_max if (f0_max is not None) else 1975.5
|
547 |
-
self.f0_min = f0_min if (f0_min is not None) else 32.70
|
548 |
-
self.confidence = confidence if (confidence is not None) else False
|
549 |
-
self.threshold = threshold if (threshold is not None) else 0.05
|
550 |
-
self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
|
551 |
-
|
552 |
-
self.cent_table_b = torch.Tensor(
|
553 |
-
np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0],
|
554 |
-
out_dims))
|
555 |
-
self.register_buffer("cent_table", self.cent_table_b)
|
556 |
-
|
557 |
-
# conv in stack
|
558 |
-
_leaky = nn.LeakyReLU()
|
559 |
-
self.stack = nn.Sequential(
|
560 |
-
nn.Conv1d(input_channel, n_chans, 3, 1, 1),
|
561 |
-
nn.GroupNorm(4, n_chans),
|
562 |
-
_leaky,
|
563 |
-
nn.Conv1d(n_chans, n_chans, 3, 1, 1))
|
564 |
-
|
565 |
-
# transformer
|
566 |
-
self.decoder = PCmer(
|
567 |
-
num_layers=n_layers,
|
568 |
-
num_heads=8,
|
569 |
-
dim_model=n_chans,
|
570 |
-
dim_keys=n_chans,
|
571 |
-
dim_values=n_chans,
|
572 |
-
residual_dropout=0.1,
|
573 |
-
attention_dropout=0.1)
|
574 |
-
self.norm = nn.LayerNorm(n_chans)
|
575 |
-
|
576 |
-
# out
|
577 |
-
self.n_out = out_dims
|
578 |
-
self.dense_out = weight_norm(
|
579 |
-
nn.Linear(n_chans, self.n_out))
|
580 |
-
|
581 |
-
def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder = "local_argmax"):
|
582 |
-
"""
|
583 |
-
input:
|
584 |
-
B x n_frames x n_unit
|
585 |
-
return:
|
586 |
-
dict of B x n_frames x feat
|
587 |
-
"""
|
588 |
-
if cdecoder == "argmax":
|
589 |
-
self.cdecoder = self.cents_decoder
|
590 |
-
elif cdecoder == "local_argmax":
|
591 |
-
self.cdecoder = self.cents_local_decoder
|
592 |
-
if self.use_input_conv:
|
593 |
-
x = self.stack(mel.transpose(1, 2)).transpose(1, 2)
|
594 |
-
else:
|
595 |
-
x = mel
|
596 |
-
x = self.decoder(x)
|
597 |
-
x = self.norm(x)
|
598 |
-
x = self.dense_out(x) # [B,N,D]
|
599 |
-
x = torch.sigmoid(x)
|
600 |
-
if not infer:
|
601 |
-
gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1]
|
602 |
-
gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim]
|
603 |
-
loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, gt_cent_f0) # bce loss
|
604 |
-
# l2 regularization
|
605 |
-
if self.loss_l2_regularization:
|
606 |
-
loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale)
|
607 |
-
x = loss_all
|
608 |
-
if infer:
|
609 |
-
x = self.cdecoder(x)
|
610 |
-
x = self.cent_to_f0(x)
|
611 |
-
if not return_hz_f0:
|
612 |
-
x = (1 + x / 700).log()
|
613 |
-
return x
|
614 |
-
|
615 |
-
def cents_decoder(self, y, mask=True):
|
616 |
-
B, N, _ = y.size()
|
617 |
-
ci = self.cent_table[None, None, :].expand(B, N, -1)
|
618 |
-
rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True) # cents: [B,N,1]
|
619 |
-
if mask:
|
620 |
-
confident = torch.max(y, dim=-1, keepdim=True)[0]
|
621 |
-
confident_mask = torch.ones_like(confident)
|
622 |
-
confident_mask[confident <= self.threshold] = float("-INF")
|
623 |
-
rtn = rtn * confident_mask
|
624 |
-
if self.confidence:
|
625 |
-
return rtn, confident
|
626 |
-
else:
|
627 |
-
return rtn
|
628 |
-
|
629 |
-
def cents_local_decoder(self, y, mask=True):
|
630 |
-
B, N, _ = y.size()
|
631 |
-
ci = self.cent_table[None, None, :].expand(B, N, -1)
|
632 |
-
confident, max_index = torch.max(y, dim=-1, keepdim=True)
|
633 |
-
local_argmax_index = torch.arange(0,9).to(max_index.device) + (max_index - 4)
|
634 |
-
local_argmax_index[local_argmax_index<0] = 0
|
635 |
-
local_argmax_index[local_argmax_index>=self.n_out] = self.n_out - 1
|
636 |
-
ci_l = torch.gather(ci,-1,local_argmax_index)
|
637 |
-
y_l = torch.gather(y,-1,local_argmax_index)
|
638 |
-
rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True) # cents: [B,N,1]
|
639 |
-
if mask:
|
640 |
-
confident_mask = torch.ones_like(confident)
|
641 |
-
confident_mask[confident <= self.threshold] = float("-INF")
|
642 |
-
rtn = rtn * confident_mask
|
643 |
-
if self.confidence:
|
644 |
-
return rtn, confident
|
645 |
-
else:
|
646 |
-
return rtn
|
647 |
-
|
648 |
-
def cent_to_f0(self, cent):
|
649 |
-
return 10. * 2 ** (cent / 1200.)
|
650 |
-
|
651 |
-
def f0_to_cent(self, f0):
|
652 |
-
return 1200. * torch.log2(f0 / 10.)
|
653 |
-
|
654 |
-
def gaussian_blurred_cent(self, cents): # cents: [B,N,1]
|
655 |
-
mask = (cents > 0.1) & (cents < (1200. * np.log2(self.f0_max / 10.)))
|
656 |
-
B, N, _ = cents.size()
|
657 |
-
ci = self.cent_table[None, None, :].expand(B, N, -1)
|
658 |
-
return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()
|
659 |
-
|
660 |
-
|
661 |
-
class FCPEInfer:
|
662 |
-
def __init__(self, model_path, device=None, dtype=torch.float32):
|
663 |
-
if device is None:
|
664 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
665 |
-
self.device = device
|
666 |
-
ckpt = torch.load(model_path, map_location=torch.device(self.device))
|
667 |
-
self.args = DotDict(ckpt["config"])
|
668 |
-
self.dtype = dtype
|
669 |
-
model = FCPE(
|
670 |
-
input_channel=self.args.model.input_channel,
|
671 |
-
out_dims=self.args.model.out_dims,
|
672 |
-
n_layers=self.args.model.n_layers,
|
673 |
-
n_chans=self.args.model.n_chans,
|
674 |
-
use_siren=self.args.model.use_siren,
|
675 |
-
use_full=self.args.model.use_full,
|
676 |
-
loss_mse_scale=self.args.loss.loss_mse_scale,
|
677 |
-
loss_l2_regularization=self.args.loss.loss_l2_regularization,
|
678 |
-
loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale,
|
679 |
-
loss_grad1_mse=self.args.loss.loss_grad1_mse,
|
680 |
-
loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale,
|
681 |
-
f0_max=self.args.model.f0_max,
|
682 |
-
f0_min=self.args.model.f0_min,
|
683 |
-
confidence=self.args.model.confidence,
|
684 |
-
)
|
685 |
-
model.to(self.device).to(self.dtype)
|
686 |
-
model.load_state_dict(ckpt['model'])
|
687 |
-
model.eval()
|
688 |
-
self.model = model
|
689 |
-
self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device)
|
690 |
-
|
691 |
-
@torch.no_grad()
|
692 |
-
def __call__(self, audio, sr, threshold=0.05):
|
693 |
-
self.model.threshold = threshold
|
694 |
-
audio = audio[None,:]
|
695 |
-
mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
|
696 |
-
f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
|
697 |
-
return f0
|
698 |
-
|
699 |
-
|
700 |
-
class Wav2Mel:
|
701 |
-
|
702 |
-
def __init__(self, args, device=None, dtype=torch.float32):
|
703 |
-
# self.args = args
|
704 |
-
self.sampling_rate = args.mel.sampling_rate
|
705 |
-
self.hop_size = args.mel.hop_size
|
706 |
-
if device is None:
|
707 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
708 |
-
self.device = device
|
709 |
-
self.dtype = dtype
|
710 |
-
self.stft = STFT(
|
711 |
-
args.mel.sampling_rate,
|
712 |
-
args.mel.num_mels,
|
713 |
-
args.mel.n_fft,
|
714 |
-
args.mel.win_size,
|
715 |
-
args.mel.hop_size,
|
716 |
-
args.mel.fmin,
|
717 |
-
args.mel.fmax
|
718 |
-
)
|
719 |
-
self.resample_kernel = {}
|
720 |
-
|
721 |
-
def extract_nvstft(self, audio, keyshift=0, train=False):
|
722 |
-
mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2) # B, n_frames, bins
|
723 |
-
return mel
|
724 |
-
|
725 |
-
def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
|
726 |
-
audio = audio.to(self.dtype).to(self.device)
|
727 |
-
# resample
|
728 |
-
if sample_rate == self.sampling_rate:
|
729 |
-
audio_res = audio
|
730 |
-
else:
|
731 |
-
key_str = str(sample_rate)
|
732 |
-
if key_str not in self.resample_kernel:
|
733 |
-
self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate, lowpass_filter_width=128)
|
734 |
-
self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device)
|
735 |
-
audio_res = self.resample_kernel[key_str](audio)
|
736 |
-
|
737 |
-
# extract
|
738 |
-
mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) # B, n_frames, bins
|
739 |
-
n_frames = int(audio.shape[1] // self.hop_size) + 1
|
740 |
-
if n_frames > int(mel.shape[1]):
|
741 |
-
mel = torch.cat((mel, mel[:, -1:, :]), 1)
|
742 |
-
if n_frames < int(mel.shape[1]):
|
743 |
-
mel = mel[:, :n_frames, :]
|
744 |
-
return mel
|
745 |
-
|
746 |
-
def __call__(self, audio, sample_rate, keyshift=0, train=False):
|
747 |
-
return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)
|
748 |
-
|
749 |
-
|
750 |
-
class DotDict(dict):
|
751 |
-
def __getattr__(*args):
|
752 |
-
val = dict.get(*args)
|
753 |
-
return DotDict(val) if type(val) is dict else val
|
754 |
-
|
755 |
-
__setattr__ = dict.__setitem__
|
756 |
-
__delattr__ = dict.__delitem__
|
757 |
-
|
758 |
-
class F0Predictor(object):
|
759 |
-
def compute_f0(self,wav,p_len):
|
760 |
-
'''
|
761 |
-
input: wav:[signal_length]
|
762 |
-
p_len:int
|
763 |
-
output: f0:[signal_length//hop_length]
|
764 |
-
'''
|
765 |
-
pass
|
766 |
-
|
767 |
-
def compute_f0_uv(self,wav,p_len):
|
768 |
-
'''
|
769 |
-
input: wav:[signal_length]
|
770 |
-
p_len:int
|
771 |
-
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
772 |
-
'''
|
773 |
-
pass
|
774 |
-
|
775 |
-
class FCPE(F0Predictor):
|
776 |
-
def __init__(self, model_path, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sampling_rate=44100,
|
777 |
-
threshold=0.05):
|
778 |
-
self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype)
|
779 |
-
self.hop_length = hop_length
|
780 |
-
self.f0_min = f0_min
|
781 |
-
self.f0_max = f0_max
|
782 |
-
if device is None:
|
783 |
-
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
784 |
-
else:
|
785 |
-
self.device = device
|
786 |
-
self.threshold = threshold
|
787 |
-
self.sampling_rate = sampling_rate
|
788 |
-
self.dtype = dtype
|
789 |
-
self.name = "fcpe"
|
790 |
-
|
791 |
-
def repeat_expand(
|
792 |
-
self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
|
793 |
-
):
|
794 |
-
ndim = content.ndim
|
795 |
-
|
796 |
-
if content.ndim == 1:
|
797 |
-
content = content[None, None]
|
798 |
-
elif content.ndim == 2:
|
799 |
-
content = content[None]
|
800 |
-
|
801 |
-
assert content.ndim == 3
|
802 |
-
|
803 |
-
is_np = isinstance(content, np.ndarray)
|
804 |
-
if is_np:
|
805 |
-
content = torch.from_numpy(content)
|
806 |
-
|
807 |
-
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
|
808 |
-
|
809 |
-
if is_np:
|
810 |
-
results = results.numpy()
|
811 |
-
|
812 |
-
if ndim == 1:
|
813 |
-
return results[0, 0]
|
814 |
-
elif ndim == 2:
|
815 |
-
return results[0]
|
816 |
-
|
817 |
-
def post_process(self, x, sampling_rate, f0, pad_to):
|
818 |
-
if isinstance(f0, np.ndarray):
|
819 |
-
f0 = torch.from_numpy(f0).float().to(x.device)
|
820 |
-
|
821 |
-
if pad_to is None:
|
822 |
-
return f0
|
823 |
-
|
824 |
-
f0 = self.repeat_expand(f0, pad_to)
|
825 |
-
|
826 |
-
vuv_vector = torch.zeros_like(f0)
|
827 |
-
vuv_vector[f0 > 0.0] = 1.0
|
828 |
-
vuv_vector[f0 <= 0.0] = 0.0
|
829 |
-
|
830 |
-
# 去掉0频率, 并线性插值
|
831 |
-
nzindex = torch.nonzero(f0).squeeze()
|
832 |
-
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
|
833 |
-
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
|
834 |
-
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
|
835 |
-
|
836 |
-
vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]
|
837 |
-
|
838 |
-
if f0.shape[0] <= 0:
|
839 |
-
return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(), vuv_vector.cpu().numpy()
|
840 |
-
if f0.shape[0] == 1:
|
841 |
-
return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[
|
842 |
-
0]).cpu().numpy(), vuv_vector.cpu().numpy()
|
843 |
-
|
844 |
-
# 大概可以用 torch 重写?
|
845 |
-
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
|
846 |
-
# vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
|
847 |
-
|
848 |
-
return f0, vuv_vector.cpu().numpy()
|
849 |
-
|
850 |
-
def compute_f0(self, wav, p_len=None):
|
851 |
-
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
|
852 |
-
if p_len is None:
|
853 |
-
print("fcpe p_len is None")
|
854 |
-
p_len = x.shape[0] // self.hop_length
|
855 |
-
#else:
|
856 |
-
# assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
857 |
-
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
|
858 |
-
if torch.all(f0 == 0):
|
859 |
-
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
|
860 |
-
return rtn, rtn
|
861 |
-
return self.post_process(x, self.sampling_rate, f0, p_len)[0]
|
862 |
-
|
863 |
-
def compute_f0_uv(self, wav, p_len=None):
|
864 |
-
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
|
865 |
-
if p_len is None:
|
866 |
-
p_len = x.shape[0] // self.hop_length
|
867 |
-
#else:
|
868 |
-
# assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
869 |
-
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
|
870 |
-
if torch.all(f0 == 0):
|
871 |
-
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
|
872 |
-
return rtn, rtn
|
873 |
-
return self.post_process(x, self.sampling_rate, f0, p_len)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|