update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: mobilevit-small-10k-steps
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# mobilevit-small-10k-steps
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [apple/deeplabv3-mobilevit-small](https://huggingface.co/apple/deeplabv3-mobilevit-small) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0821
|
18 |
+
- Mean Iou: 0.0
|
19 |
+
- Mean Accuracy: 0.0
|
20 |
+
- Overall Accuracy: 0.0
|
21 |
+
- Accuracy Background: nan
|
22 |
+
- Accuracy Left: 0.0
|
23 |
+
- Accuracy Right: 0.0
|
24 |
+
- Iou Background: 0.0
|
25 |
+
- Iou Left: 0.0
|
26 |
+
- Iou Right: 0.0
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 6e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 1337
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: polynomial
|
51 |
+
- training_steps: 10000
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Left | Accuracy Right | Iou Background | Iou Left | Iou Right |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:--------------:|:--------:|:---------:|
|
57 |
+
| 0.5041 | 1.0 | 385 | 0.3382 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
58 |
+
| 0.1553 | 2.0 | 770 | 0.1387 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
59 |
+
| 0.1019 | 3.0 | 1155 | 0.1037 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
60 |
+
| 0.0882 | 4.0 | 1540 | 0.0883 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
61 |
+
| 0.0828 | 5.0 | 1925 | 0.0823 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
62 |
+
| 0.0807 | 6.0 | 2310 | 0.0820 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
63 |
+
| 0.0795 | 7.0 | 2695 | 0.0804 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
64 |
+
| 0.0786 | 8.0 | 3080 | 0.0784 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
65 |
+
| 0.0777 | 9.0 | 3465 | 0.0786 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
66 |
+
| 0.0771 | 10.0 | 3850 | 0.0774 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
67 |
+
| 0.0773 | 11.0 | 4235 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
68 |
+
| 0.0765 | 12.0 | 4620 | 0.0782 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
69 |
+
| 0.0757 | 13.0 | 5005 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
70 |
+
| 0.0756 | 14.0 | 5390 | 0.0774 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
71 |
+
| 0.0754 | 15.0 | 5775 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
72 |
+
| 0.0746 | 16.0 | 6160 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
73 |
+
| 0.074 | 17.0 | 6545 | 0.0779 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
74 |
+
| 0.0736 | 18.0 | 6930 | 0.0792 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
75 |
+
| 0.0737 | 19.0 | 7315 | 0.0801 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
76 |
+
| 0.073 | 20.0 | 7700 | 0.0804 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
77 |
+
| 0.0729 | 21.0 | 8085 | 0.0805 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
78 |
+
| 0.0734 | 22.0 | 8470 | 0.0804 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
79 |
+
| 0.0726 | 23.0 | 8855 | 0.0811 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
80 |
+
| 0.0726 | 24.0 | 9240 | 0.0816 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
81 |
+
| 0.0721 | 25.0 | 9625 | 0.0822 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
82 |
+
| 0.0727 | 25.97 | 10000 | 0.0821 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.28.0.dev0
|
88 |
+
- Pytorch 2.0.0+cu118
|
89 |
+
- Datasets 2.11.0
|
90 |
+
- Tokenizers 0.13.3
|