Efferbach commited on
Commit
7656836
·
1 Parent(s): 65b3329

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: mobilevit-small-10k-steps
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # mobilevit-small-10k-steps
14
+
15
+ This model is a fine-tuned version of [apple/deeplabv3-mobilevit-small](https://huggingface.co/apple/deeplabv3-mobilevit-small) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0821
18
+ - Mean Iou: 0.0
19
+ - Mean Accuracy: 0.0
20
+ - Overall Accuracy: 0.0
21
+ - Accuracy Background: nan
22
+ - Accuracy Left: 0.0
23
+ - Accuracy Right: 0.0
24
+ - Iou Background: 0.0
25
+ - Iou Left: 0.0
26
+ - Iou Right: 0.0
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 6e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 1337
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: polynomial
51
+ - training_steps: 10000
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Left | Accuracy Right | Iou Background | Iou Left | Iou Right |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:--------------:|:--------:|:---------:|
57
+ | 0.5041 | 1.0 | 385 | 0.3382 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
58
+ | 0.1553 | 2.0 | 770 | 0.1387 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
59
+ | 0.1019 | 3.0 | 1155 | 0.1037 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
60
+ | 0.0882 | 4.0 | 1540 | 0.0883 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
61
+ | 0.0828 | 5.0 | 1925 | 0.0823 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
62
+ | 0.0807 | 6.0 | 2310 | 0.0820 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
63
+ | 0.0795 | 7.0 | 2695 | 0.0804 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
64
+ | 0.0786 | 8.0 | 3080 | 0.0784 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
65
+ | 0.0777 | 9.0 | 3465 | 0.0786 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
66
+ | 0.0771 | 10.0 | 3850 | 0.0774 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
67
+ | 0.0773 | 11.0 | 4235 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
68
+ | 0.0765 | 12.0 | 4620 | 0.0782 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
69
+ | 0.0757 | 13.0 | 5005 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
70
+ | 0.0756 | 14.0 | 5390 | 0.0774 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
71
+ | 0.0754 | 15.0 | 5775 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
72
+ | 0.0746 | 16.0 | 6160 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
73
+ | 0.074 | 17.0 | 6545 | 0.0779 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
74
+ | 0.0736 | 18.0 | 6930 | 0.0792 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
75
+ | 0.0737 | 19.0 | 7315 | 0.0801 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
76
+ | 0.073 | 20.0 | 7700 | 0.0804 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
77
+ | 0.0729 | 21.0 | 8085 | 0.0805 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
78
+ | 0.0734 | 22.0 | 8470 | 0.0804 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
79
+ | 0.0726 | 23.0 | 8855 | 0.0811 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
80
+ | 0.0726 | 24.0 | 9240 | 0.0816 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
81
+ | 0.0721 | 25.0 | 9625 | 0.0822 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
82
+ | 0.0727 | 25.97 | 10000 | 0.0821 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.28.0.dev0
88
+ - Pytorch 2.0.0+cu118
89
+ - Datasets 2.11.0
90
+ - Tokenizers 0.13.3